You are watching a preview-version of the website. Click here to log out.

From Pythagoras to Fourier and From Geometry to Nature

DOI: https://doi.org/10.55060/b.p2fg2n.chref.220215.019

References

Downloads:
1,829
Full-Text Views:
176

[1]
AndrewsL.C. Special Functions of Mathematics for Engineers. Oxford University Press, Oxford – New York, 1998.
[2]
AntonelliP.L.ZastawniakT.J. Preface: Lagrange Differential Geometry, Finsler Spaces and Noise Applied in Biology and Physics. Mathematical and Computer Modelling, Vol. 20(4-5), pp. xixiii, 1994. DOI: https://doi.org/10.1016/0895-7177(94)90152-X DOI: https://doi.org/10.1016/0895-7177(94)90152-X
[3]
ArrowK.J.CheneryH.B.MinhasB.S.SolowR.M. Capital-Labor Substitution and Economic Efficiency. The Review of Economics and Statistics, Vol. 43, pp. 225250, 1961.
[4]
BiaP.CaratelliD.MesciaL.GielisJ. Analysis and Synthesis of Supershaped Dielectric Lens Antennas. IET Microwaves, Antennas & Propagation, Vol. 9(14), pp. 14971504, 2015. DOI: https://doi.org/10.1049/iet-map.2015.0091 DOI: https://doi.org/10.1049/iet-map.2015.0091
[5]
BracewellR.N. The Life of Joseph Fourier. In: PriceJ.F. (eds.), Fourier Techniques and Applications. Springer, Boston (MA), 1985.
[6]
BrandiP.RicciP.E. Some Properties of the Pseudo-Chebyshev Polynomials of Half-Integer Degree. Tbilisi Mathematical Journal, Vol. 12(4), pp. 111121, 2019.
[7]
BrandiP.SalvadoriA. A Magic Formula of Nature and Art. APLIMAT 2018, 17th Conference on Applied Mathematics, Bratislava, Slovakia, 6–8 February 2018.
[8]
Van BrummelenG. Jamshīd al-Kāshī: Calculating Genius. Mathematics in School, Vol. 27(4), pp. 4044, 1998. URL: http://www.jstor.org/stable/30211875 URL: http://www.jstor.org/stable/30211875
[9]
CaratelliD.GermanoB.GielisJ.HeM.X.NataliniP.RicciP.E. Fourier Solution of the Dirichlet Problem for the Laplace and Helmholtz Equations in Starlike Domains. Lecture Notes of TICMI, Vol. 10, pp. 164, 2009.
[10]
CaratelliD.GermanoB.HeM.X.RicciP.E. Solution of the Dirichlet Problem for the Laplace Equation in a General Cylinder. Lecture Notes of TICMI, Vol. 10, pp. 2034, 2009.
[11]
CaratelliD.GielisJ.NataliniP.RicciP.E.TavkhelidzeI. The Robin Problem for the Helmholtz Equation in a Starlike Planar Domain. Georgian Mathematical Journal, Vol. 18(3), pp. 465479, 2011. DOI: https://doi.org/10.1515/gmj.2011.0031 DOI: https://doi.org/10.1515/gmj.2011.0031
[12]
CaratelliD.GielisJ.RicciP.E. Fourier-Like Solution of the Dirichlet Problem for the Laplace Equation in k-Type Gielis Domains. Journal of Pure and Applied Mathematics: Advances and Applications, Vol. 5(2), pp. 99111, 2011.
[13]
CaratelliD.GielisJ.RicciP.E. The Robin Problem for the Helmholtz Equation in a Three-Dimensional Starlike Domain. Applied Mathematics, Informatics and Mechanics, Vol. 21(1), pp. 517, 2016.
[14]
CaratelliD.GielisJ.TavkhelidzeI.RicciP.E. Fourier-Hankel Solution of the Robin Problem for the Helmholtz Equation in Supershaped Annular Domains. Boundary Value Problems, Volume 2013, 253, 2013. DOI: https://doi.org/10.1186/1687-2770-2013-253 DOI: https://doi.org/10.1186/1687-2770-2013-253
[15]
CaratelliD.GielisJ.TavkhelidzeI.RicciP.E. Spherical Harmonic Solution of the Robin Problem for the Helmholtz Equation in a Supershaped Shell. Applied Mathematics, Vol. 4(1A), pp. 263270, 2013. DOI: https://doi.org/10.4236/am.2013.41A040 DOI: https://doi.org/10.4236/am.2013.41A040
[16]
CaratelliD.NataliniP.RicciP.E. Fourier Solution of the Wave Equation for a Star-Like-Shaped Vibrating Membrane. Computers & Mathematics With Applications, Vol. 59(1), pp. 176184, 2010. DOI: https://doi.org/10.1016/j.camwa.2009.07.060 DOI: https://doi.org/10.1016/j.camwa.2009.07.060
[17]
CaratelliD.NataliniP.RicciP.E.YarovoyA. Fourier Solution of the 2D Neumann Problem for the Helmholtz Equation. Lecture Notes of Seminario Interdisciplinare di Matematica, Vol. 9, pp. 163172, 2010.
[18]
CaratelliD.NataliniP.RicciP.E.YarovoyA. The Neumann Problem for the Helmholtz Equation in a Starlike Planar Domain. Applied Mathematics and Computation, Vol. 216(2), pp. 556564, 2010. DOI: https://doi.org/10.1016/j.amc.2010.01.077 DOI: https://doi.org/10.1016/j.amc.2010.01.077
[19]
CaratelliD.RicciP.E. The Dirichlet Problem for the Helmholtz Equation in a Starlike Domain. Lecture Notes of TICMI, Vol. 10, pp. 5059, 2009.
[20]
CaratelliD.RicciP.E. The Dirichlet Problem for the Laplace Equation in a Starlike Domain. Lecture Notes of TICMI, Vol. 10, pp. 3549, 2009.
[21]
CaratelliD.RicciP.E.GielisJ. The Robin Problem for the Laplace Equation in a Three-Dimensional Starlike Domain. Applied Mathematics and Computation, Vol. 218(3), pp. 713719, 2011. DOI: https://doi.org/10.1016/j.amc.2011.03.146 DOI: https://doi.org/10.1016/j.amc.2011.03.146
[22]
CarlesonL. On Convergence and Growth of Partial Sums of Fourier Series. Acta Mathematica, Vol. 116, pp. 135157, 1966. DOI: https://doi.org/10.1007/BF02392815 DOI: https://doi.org/10.1007/BF02392815
[23]
CesaranoC.PinelasS.RicciP.E. The Third and Fourth Kind Pseudo-Chebyshev Polynomials of Half-Integer Degree. Symmetry, Vol. 11(2), 274, 2019. DOI: https://doi.org/10.3390/sym11020274 DOI: https://doi.org/10.3390/sym11020274
[24]
CesaranoC.RicciP.E. Orthogonality Properties of the Pseudo-Chebyshev Functions (Variations on a Chebyshev’s Theme). Mathematics, Vol. 7(2), 180, 2019. DOI: https://doi.org/10.3390/math7020180 DOI: https://doi.org/10.3390/math7020180
[25]
ChaconR. Using Jacobian Elliptic Functions to Model Natural Shapes. International Journal of Bifurcation and Chaos, Vol. 22(1), 1230005, 2012. DOI: https://doi.org/10.1142/S0218127412300054 DOI: https://doi.org/10.1142/S0218127412300054
[26]
ChakrabartyD. Non-Parametric Deprojection of Surface Brightness Profiles of Galaxies in Generalised Geometries. Astronomy and Astrophysics, Vol. 510, A45, 2010. DOI: https://doi.org/10.1051/0004-6361/200912008 DOI: https://doi.org/10.1051/0004-6361/200912008
[27]
ChapmanD.GielisJ. Gielis Transformations for the Audiovisual Database. Symmetry Festival 2021, Sofia, Bulgaria. Extended abstract in: Symmetry, Culture and Science, 2021.
[28]
Chen.B.Y. Total Mean Curvature and Submanifolds of Finite Type. Series in Pure Mathematics, Vol. 1, World Scientific, 1984. DOI: https://doi.org/10.1142/0065 DOI: https://doi.org/10.1142/0065
[29]
ChenB.Y.DecuS.VerstraelenL. Notes on Isotropic Geometry of Production Models. Kragujevac Journal of Mathematics, Vol. 38(1), pp. 2333, 2014.
[30]
ChernS.-S. Finsler Geometry Is Just Riemannian Geometry Without the Quadratic Restriction. Notices of the American Mathematical Society, Vol. 43(9), pp. 959963, 1996.
[31]
ChiharaT. An Introduction to Orthogonal Polynomials. Gordon and Breach, New York, 1978.
[32]
DattoliG.MiglioratiM.RicciP.E. The Parabolic Trigonometric Functions and Chebyshev Radicals. ENEA Report RT/2007/21/FIM, 2007.
[33]
DattoliG.Di PalmaE.GielisJ.LicciardiS. Parabolic Trigonometry. International Journal of Applied and Computational Mathematics, Vol. 6(2), 37, 2020. DOI: https://doi.org/10.1007/s40819-020-0789-6 DOI: https://doi.org/10.1007/s40819-020-0789-6
[34]
FeynmanR. The Feynman Lectures on Physics, Vol. 2, 1963.
[35]
FicheraG.De VitoL. Funzioni Analitiche di Una Variabile Complessa. Veschi, Rome, 1964.
[36]
FougerolleY.D.GribokA.FoufouS.TruchetetF.AbidiM.A. Boolean Operations With Implicit and Parametric Representation of Primitives Using R-Functions. IEEE Transactions on Visualization and Computer Graphics, Vol. 11(5), pp. 529539, 2005. DOI: https://doi.org/10.1109/TVCG.2005.72 DOI: https://doi.org/10.1109/TVCG.2005.72
[37]
GardnerM. Piet Hein’s Superellipse. In: Mathematical Carnival: A New Round-Up of Tantalizers and Puzzles from Scientific American, pp. 240254, 1977.
[38]
GautschiW. On Mean Convergence of Extended Lagrange Interpolation. Journal of Computational and Applied Mathematics, Vol. 43(1-2), pp. 1935, 1992. DOI: https://doi.org/10.1016/0377-0427(92)90257-X DOI: https://doi.org/10.1016/0377-0427(92)90257-X
[39]
GielisF.GielisJ. Gielis Transformations and Their Impact on Science and Technology. Technical Report on ResearchGate, 2021. DOI: https://doi.org/10.13140/RG.2.2.26896.64005/2 DOI: https://doi.org/10.13140/RG.2.2.26896.64005/2
[40]
GielisJ. A Generic Geometric Transformation That Unifies a Wide Range of Natural and Abstract Shapes. American Journal of Botany, Vol. 90(3), pp. 333338, 2003. DOI: https://doi.org/10.3732/ajb.90.3.333 DOI: https://doi.org/10.3732/ajb.90.3.333
[41]
GielisJ. The Geometrical Beauty of Plants. Atlantis Press, Paris, 2017.
[42]
GielisJ. De Uitvinding van de Cirkel. Geniaal Press, Antwerp, 2001 (ISBN 90-6215-792-0). Translated into English: J. Gielis. Inventing the Circle. Geniaal Press, Antwerp, 2003.
[43]
GielisJ.CaratelliD.van CoevordenC.M.D.J.RicciP.E. The Common Descent of Biological Shape Description and Special Functions. In: International Conference on Differential & Difference Equations and Applications, pp. 119131, Springer, Cham, 2017.
[44]
GielisJ.CaratelliD.FougerolleY.RicciP.E.GeratsT. A Biogeometrical Model for Corolla Fusion in Asclepiad Flowers. In: Atlantis Transactions in Geometry, Vol. 2, Modeling in Mathematics: Proceedings of the Second Tbilisi-Salerno Workshop on Modeling in Mathematics, pp. 83106. Atlantis Press, Paris, 2017.
[45]
GielisJ.CaratelliD.FougerolleY.RicciP.E.TavkelidzeI.GeratsT. Universal Natural Shapes: From Unifying Shape Description to Simple Methods for Shape Analysis and Boundary Value Problems. PLOS One, Vol. 7(9), e29324, 2012. DOI: https://doi.org/10.1371/journal.pone.0029324 DOI: https://doi.org/10.1371/journal.pone.0029324
[46]
GielisJ.CaratelliD.ShiP.RicciP.E. A Note on Spirals and Curvature. Growth and Form, Vol. 1(1), pp. 18, 2020. DOI: https://doi.org/10.2991/gaf.k.200124.001 DOI: https://doi.org/10.2991/gaf.k.200124.001
[47]
GielisJ.HaesenS.VerstraelenL. Universal Natural Shapes: From the Super Eggs of Piet Hein to the Cosmic Egg of Georges Lemaître. Kragujevac Journal of Mathematics, Vol. 28, pp. 5768, 2005.
[48]
GielisJ.NataliniP.RicciP.E. A Note About Generalized Forms of the Gielis Formula. In: Atlantis Transactions in Geometry, Vol. 2, Modeling in Mathematics: Proceedings of the Second Tbilisi-Salerno Workshop on Modeling in Mathematics, pp. 107116. Atlantis Press, Paris, 2017.
[49]
GielisJ.RicciP.E.TavkhelidzeI. The Möbius Phenomenon in Generalized Möbius-Listing Surfaces and Bodies, and Arnold’s Cat Phenomenon. Tbilisi Mathematical Journal, article in press, 2021.
[50]
GielisJ.VerhulstR.CaratelliD.RicciP.E.TavkhelidzeI. On Means, Polynomials and Special Functions. The Teaching of Mathematics, Vol. 17(1), pp. 120, 2014.
[51]
GouzévitchI.GouzévitchD. Gabriel Lamé à Saint Pétersbourg (1820–1831). Bulletin de la Sabix - Société des Amis de la Bibliothèque et de l’Histoire de l’École Polytechnique, Vol. 44, pp. 2043, 2009. DOI: https://doi.org/10.4000/sabix.624 DOI: https://doi.org/10.4000/sabix.624
[52]
GrahamA.W.SpitlerL.R.ForbesD.A.LiskerT.MooreB.JanzJ. LEDA 074886: A Remarkable Rectangular-Looking Galaxy. The Astrophysical Journal, Vol. 750(2), 121, 2012.
[53]
GrammelR. Eine Verallgemeinerung der Kreis- und Hyper-belfunktionen. Ingenieur-Archiv, Vol. 16(3-4), pp. 188200, 1948.
[54]
GuidettiM.CaratelliD.RoystonT.J. Converging Super-Elliptic Torsional Shear Waves in a Bounded Transverse Isotropic Viscoelastic Material with Nonhomogeneous Outer Boundary. The Journal of the Acoustical Society of America, Vol. 146(5), EL451, 2019. DOI: https://doi.org/10.1121/1.5134657 DOI: https://doi.org/10.1121/1.5134657
[55]
GuitartR. Les Coordonnées Curvilignes de Gabriel Lamé, Réprésentations des Situation Physiques et Nouveaux Objets Mathématiques. Bulletin de la Sabix - Société des Amis de la Bibliothèque et de l’Histoire de l’École Polytechnique, Vol. 44, pp. 119129, 2009. DOI: https://doi.org/10.4000/sabix.686 DOI: https://doi.org/10.4000/sabix.686
[56]
HaesenS.NistorA.I.VerstraelenL. On Growth and Form and Geometry I. Kragujevac Journal of Mathematics, Vol. 36(1), pp. 525, 2012.
[57]
HalmosP.R. Finite-Dimensional Vector Spaces. Springer-Verlag, Berlin - New York, 1974.
[58]
HowellK.B. Principles of Fourier Analysis. CRC Press, Boca Raton (FL), 2001.
[59]
HuangW.LiY.NiklasK.J.GielisJ.DingY.CaoL.ShiP. A Superellipse With Deformation and Its Application in Describing the Cross-Sectional Shapes of a Square Bamboo. Symmetry, Vol. 12(12), 2073, 2020. DOI: https://doi.org/10.3390/sym12122073 DOI: https://doi.org/10.3390/sym12122073
[60]
JeffreyA. Mathematics for Engineers and Scientists, 6th Edition. CRC Press, Boca Raton (FL), 2004.
[61]
KaganV.F. Riemann’s Geometric Ideas. The American Mathematical Monthly, Vol. 112(1), pp. 7986, 2005.
[62]
KnoppK. Infinite Sequences and Series. Dover Publications, New York (NY), 1956.
[63]
KoisoM.PalmerB. Equilibria for Anisotropic Surface Energies and the Gielis Formula. Forma, Vol. 23(1), pp. 18, 2008.
[64]
KoisoM.PalmerB. Rolling Construction for Anisotropic Delaunay Surfaces. Pacific Journal of Mathematics, Vol. 234(2), pp. 345378, 2008. DOI: https://doi.org/10.2140/pjm.2008.234.345 DOI: https://doi.org/10.2140/pjm.2008.234.345
[65]
KrallG. Meccanica Tecnica Delle Vibrazioni, Vol. II. Veschi, Rome, 1970.
[66]
LaméG. Examen des Différentes Méthodes Employées pour Résoudre les Problèmes de Géométrie. Mme. Ve. Courcier, Imprimeur-Libraire, 1818.
[67]
LenjouK. Krommen en Oppervlakken van Lamé en Gielis: Van de Formule van Pythagoras tot de Superformule. Master’s Thesis, University of Louvain, Department of Mathematics, 2005.
[68]
LinS.ZhangL.ReddyG.V.P.HuiC.GielisJ.DingY.ShiP. A Geometrical Model for Testing Bilateral Symmetry of Bamboo Leaf With a Simplified Gielis Equation. Ecology and Evolution, Vol. 6(19), pp. 67986806, 2016. DOI: https://doi.org/10.1002/ece3.2407 DOI: https://doi.org/10.1002/ece3.2407
[69]
LucasÉ. Recherche sur Plusieurs Ouvrages de Léonarde de Pise. Bullettino di Bibliografia e di Storia Delle Scienze Matematiche e Fisiche, Vol. 10, March, April and May, 1877. Imprimerie des Sciences Mathématiques et Physiques, Rome, 1877.
[70]
MarksRobert J.II Handbook of Fourier Analysis & Its Applications. Oxford University Press, 2009. DOI: https://doi.org/10.1093/oso/9780195335927.001.0001 DOI: https://doi.org/10.1093/oso/9780195335927.001.0001
[71]
MasonJ.C.HandscombD.C. Chebyshev Polynomials. Chapman and Hall, New York (NY) / CRC Press, Boca Raton (FL), 2003.
[72]
MatsuuraM. Gielis’ Superformula and Regular Polygons. Journal of Geometry, Vol. 106(2), pp. 383403, 2015. DOI: https://doi.org/10.1007/s00022-015-0269-z DOI: https://doi.org/10.1007/s00022-015-0269-z
[73]
NataliniP.PatriziR.RicciP.E. Heat Problems for a Starlike Shaped Plate. Applied Mathematics and Computation, Vol. 215(2), pp. 495502, 2009. DOI: https://doi.org/10.1016/j.amc.2009.05.024 DOI: https://doi.org/10.1016/j.amc.2009.05.024
[74]
NataliniP.RicciP.E. The Laplacian in Stretched Polar Coordinates and Applications. Lecture Notes of TICMI, Vol. 10, pp. 719, 2009.
[75]
NikiforovA.F.UvarovV.B. Special Functions of Mathematical Physics. Birkhäuser Verlag, Basel, 1988.
[76]
RicciP.E. Alcune Osservazioni Sulle Potenze Delle Matrici del Secondo Ordine e Sui Polinomi di Tchebycheff di Seconda Specie. Atti della Accademia delle Scienze di Torino, Classe di Scienze Fisiche, Matematiche e Naturali, Vol. 109, pp. 405410, 1975.
[77]
RicciP.E. Complex Spirals and Pseudo-Chebyshev Polynomials of Fractional Degree. Symmetry, Vol. 10(12), 671, 2018. DOI: https://doi.org/10.3390/sym10120671 DOI: https://doi.org/10.3390/sym10120671
[78]
RicciP.E. A Note on the D-Trigonometry and the Relevant D-Fourier Expansions. Growth and Form, Vol. 2(1), pp. 1116, 2021. DOI: https://doi.org/10.2991/gaf.k.201210.002 DOI: https://doi.org/10.2991/gaf.k.201210.002
[79]
RicciP.E. A Note on Golden Ratio and Higher Order Fibonacci Sequences. Turkish Journal of Analysis and Number Theory, Vol. 8(1), pp. 15, 2020. DOI: https://doi.org/10.12691/tjant-8-1-1 DOI: https://doi.org/10.12691/tjant-8-1-1
[80]
RicciP.E. I Polinomi di Tchebycheff in Più Variabili. Rendiconti di Matematica, Vol. 11, pp. 295327, 1978.
[81]
RicciP.E. Sulle Potenze di Una Matrice. Rendiconti di Matematica, Vol. 9, pp. 179194, 1976.
[82]
RicciP.E. A Survey on Pseudo-Chebyshev Functions. 4Open, Vol. 3, 2, 2020. DOI: https://doi.org/10.1051/fopen/2020001 DOI: https://doi.org/10.1051/fopen/2020001
[83]
RieszF. Untersuchungen über Systeme Integrierbarer Funktionen. Mathematische Annalen, Vol. 69(4), pp. 449497, 1910.
[84]
RivlinT.J. The Chebyshev Polynomials. John Wiley & Sons, New York, 1974.
[85]
Rodríguez-OliverosR.Sánchez-GilJ.A. Gold Nanostars as Thermoplasmonic Nanoparticles for Optical Heating. Optics Express, Vol. 20(1), pp. 621626, 2012. DOI: https://doi.org/10.1364/OE.20.000621 DOI: https://doi.org/10.1364/OE.20.000621
[86]
RudinW. Functional Analysis, 2nd Edition. McGraw-Hill, New York (NY), 1991.
[87]
ShiP.HuangJ.G.HuiC.Grissino-MayerH.D.TardifJ.C.ZhaiL.H.WangF.S.LiB.L. Capturing Spiral Radial Growth of Conifers Using the Superellipse to Model Tree-Ring Geometric Shape. Frontiers in Plant Science, Vol. 6, 856, 2015. DOI: https://doi.org/10.3389/fpls.2015.00856 DOI: https://doi.org/10.3389/fpls.2015.00856
[88]
ShiP.RatkowskyD.A.GielisJ. The Generalized Gielis Geometric Equation and Its Application. Symmetry, Vol. 12(4), 645, 2020. DOI: https://doi.org/10.3390/sym12040645 DOI: https://doi.org/10.3390/sym12040645
[89]
ShiP.RatkowskyD.A.LiY.ZhangL.LinS.GielisJ. A General Leaf Area Geometric Formula Exists for Plants – Evidence from the Simplified Gielis Equation. Forests, Vol. 9(11), 714, 2018. DOI: https://doi.org/10.3390/f9110714 (Best Annual Paper Award in Forests in 2019) DOI: https://doi.org/10.3390/f9110714
[90]
SpíchalL. Gielisova Transformace Logaritmické Spirály. Pokroky Matematiky, Fyziky a Astronomie. Vol. 65(2), pp. 7689, 2020.
[91]
SpíchalL. Jednotková Parabola, Zlatý Řez a Parabolickeé π. Preprint on Researchgate, 2021.
[92]
SpíchalL. Superelipsa a Superformule. Matematika-Fyzika-Informatika, Vol. 29(1), pp. 5469, 2020.
[93]
SrivastavaH.M.ManochaH.L. A Treatise on Generating Functions (Mathematics and Its Applications). Halsted Press / Ellis Horwood, Chichester, 1984.
[94]
StruckC. Natural Orbit Approximations in Single Power-Law Potentials. Monthly Notices of the Royal Astronomical Society, Vol. 446(3), pp. 31393149, 2015. DOI: https://doi.org/10.1093/mnras/stu2342 DOI: https://doi.org/10.1093/mnras/stu2342
[95]
SwintonJ.OchuE. MSI Turing’s Sunflower Consortium. Novel Fibonacci and Non-Fibonacci Structure in the Sunflower: Results of a Citizen Science Experiment. Royal Society Open Science, Vol. 3(5), 160091, 2016. DOI: https://doi.org/10.1098/rsos.160091 DOI: https://doi.org/10.1098/rsos.160091
[96]
TavkhelidzeI.CaratelliD.GielisJ.RicciP.E.RogavaM.TransiricoM. On a Geometric Model of Bodies With “Complex” Configuration and Some Movements. In: Atlantis Transactions in Geometry, Vol. 2, Modeling in Mathematics: Proceedings of the Second Tbilisi-Salerno Workshop on Modeling in Mathematics, pp. 129158. Atlantis Press, Paris, 2017.
[97]
TavkhelidzeI.CassisaC.GielisJ.RicciP.E. About “Bulky” Links, Generated by Generalized Möbius Listing’s Bodies GML 3n. Rendiconti Lincei – Matematica e Applicazioni, Vol. 24(1), pp. 1138, 2013.
[98]
ThomR. Paraboles et Catastrophes: Entretiens sur les Mathématiques, la Science et la Philosophie. Flammarion, 1983.
[99]
ThompsonA.C. Minkowski Geometry. Cambridge University Press, 1996. DOI: https://doi.org/10.1017/CBO9781107325845 DOI: https://doi.org/10.1017/CBO9781107325845
[100]
TolstovG.P. Fourier Series (reprint). Dover Publications, New York (NY), 2012.
[101]
TrefethenL.N. Approximation Theory and Approximation Practice. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (PA), 2013.
[102]
VerstraelenL. A Concise Mini History of Geometry. Kragujevac Journal of Mathematics, Vol. 38(1), pp. 521, 2014.
[103]
VerstraelenL. Curves and Surfaces of Finite Chen Type. In: Geometry and Topology of Submanifolds, III, pp. 304311, World Scientific, 1991.
[104]
WeiQ.JiaoC.GuoL.DingY.CaoJ.FengJ.DongX.MaoL.SunH.YuF.YangG.ShiP.RenG.FeiZ. Exploring Key Cellular Processes and Candidate Genes Regulating the Primary Thickening Growth of Moso Underground Shoots. New Phytologist, Vol. 214(1), pp. 8196, 2016. DOI: https://doi.org/10.1111/nph.14284 DOI: https://doi.org/10.1111/nph.14284
[105]
WeilA.ChernS.S. Geometer and Friend. As cited in: S.-S. Chern, Selected Papers. Springer Verlag, 1978.
[106]
WilcoxH.J.MyersD.L. An Introduction to Lebesgue Integration and Fourier Series (reprint). Dover Publications, New York (NY), 1994.