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1.  INTRODUCTION

Is there such a thing as a “History of Curvature?” There certainly 
are accounts of its history in mathematics [1,2], starting with the 
geometry of the Ancient Greeks (Euclid of Alexandria’s Elements, 
ca. 300 bce, developed in the analytic geometry of the 17th century 
(Réné Descartes [3], Christiaan Huygens [4],1...) and flowering in 
modern differential geometry (perhaps starting with Carl Friedrich 
Gauss’ (1777–1855) famous Theorema Egregium [5]).2 For an 
extensive overview of the field in the mathematical domain see the 
volumes by Franki Dillen en Leopold Verstraelen [6].

In this paper I’ll take a view that goes against the grain. It doesn’t 
really fit into the huge and beautiful realm I sketched above.

My main point is that the intuitive notion of “curvature” must have 
been around much earlier. It should not require formal geometry 
at all. Such gut level notions necessarily derive from experiences 
involving perceptions and actions in the real world, not the world 
of Platonic objects.

But although an earthworm will likely have such experiences,3 it never 
crosses the border between sentience and sapience. Humans do.  

It is because humans construct things, both formally, but perhaps 
even more importantly, with their hands. Thinking with the hands 
precedes thinking in concepts.4

Meaning and understanding derive from what you construct 
(verum factum est – Giambattista Vico’s Scienza Nova [7]).5

2.  CURVATURE AT THE GUT LEVEL

You understand curvature when you have constructed it (Figure 1). 
Biologically speaking, technology is knowledge.

Reflecting on this in such a way, it occurred to me that the under-
standing of curvature may have commenced from the invention of 
the bow and arrow. That takes us back in time much further than 
the Ancient Greeks, all the way to the transition between the Upper 
Paleolithic and the Mesolithic [9].

The earliest artifacts date from 17,500 to 18,000 years ago.6 From 
microliths found in the south of Africa one guesses that the origin 
may go back as far as 71,000 years. After the close of the latest glacial 
period the use of the bow spread throughout the inhabited world.7

A RT I C L E  I N F O
Article History

Received 01 November 2019
Accepted 19 November 2019

Keywords

Curvature
Casorati curvature
curvedness

2000 Mathematics Subject 
Classification

22E46
53C35
57S20

A B S T R AC T
In mathematics “curvature” is described in various ways, but perhaps the most common is as a rate of spatial attitude. Such 
a definition is similar to the deviation from flatness, where flatness might again be understood (in various ways) in terms of 
congruence. In classical physics the notion of curvature occurs in kinematics and in the theory of elastic continuous media. 
The latter aspect is perhaps closest to what might be the notion of “curvature as a gut feeling.” It is least likely that hands-on 
experience with elastic materials in visuomotor interaction was at the root of the curvature as a proto-concept. One guesses it 
developed roughly in parallel with the development of spoken language, although “curvature” no doubt was present as a quality 
of experience with the Neanderthal, say. I consider relations between the very diverse notions of “curvature.” Curvature as a gut 
feeling survives even today in artistic intuition, it applies to most of us who appreciate sculpture.

© 2020 The Authors. Published by Atlantis Press SARL 
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Present address: Brain and Cognition, Tiensestraat 102  3711, 3000 Leuven, Belgium, 
Email: koenderinkjan@gmail.com 
1Yes, another Dutchman, like me. I’m proud of him, you will have your own preference, 
no doubt.
2For many “archaic” references I do not specify complete data in the bibliography. In 
all cases you should use the Internet. You will find facsimile, reprints, OCR searchable 
texts and translations into various languages, mostly downloadable for free. As a retired 
professor with very limited means I read mainly the latter.
3I refer to a tubular, segmented worm of the phylum Annelida. They are remarkably 
flexible, although I’ve never seen one that knotted itself.

4Language proper started maybe 200,000 years ago, but proto-languages date perhaps  
2 million years back.
5Thus we understand an alarm clock, but are forever unable to understand a rabbit or a 
potato.
6A Pine-wood (Pinus sylvestris) fragment from Mannheim-Vogelstang (Germany) of early 
Magdalenian age is likely to have been a bow. It wouldn’t have been longer than around 
110 cm. I don’t think it was a fire bow (similar to a drill), because a little too large for that. 
The power of a bow as smallish as this would amply suffice to kill rabbits, although simply 
trapping them might be more productive.
7With exception of Australasia and Oceania.
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3. � PICTORIAL DEPTH AND THE  
DUAL NUMBER PLANE

In Figure 3, left the longbow men illustrate the geometry in the 
plane of the bow. In Figure 3, right we see the personification of 
Death, standing in a coffin, aim his arrow straight at you. As a spec-
tator, your viewpoint is located in the plane of the bow.

This suggests that – geometrically speaking – we might describe the 
configuration in planar geometry. In the illustration of the longbow 
men this is the Euclidean plane. In Hermann Tom Ring’s painting 
the plane has degenerated into a vertical line.

In order to get to see the plane of the bow, you might be inclined 
to take a side view of the painting. But this does not work! As you 
step aside Death is still aiming at you [13]. Indeed, Death aims at all 
spectators in the space before the painting.13

Figure 1 | Cantilever beam [Galileo Galilei (1564–1642), Nuove  
Scienze, [8]].

8The invention of the bow is perhaps even more important than that of the wheel. 
Perhaps coincidentally, both are closely related to curvature. The wheel dates from the 
late Neolithic, the advent of the Bronze Age. The potter’s wheel goes back to perhaps 
4500–3300 bce (Mesopotamia).
9Elasticity, Young’s modulus.
10Second moment of area, or “moment of inertia”.
11To be converted to the kinetic energy of the arrow at the moment of “loosing.”
12The bending stiffness.

Figure 2 | Sixteenth century illustration of the impetus theory of ballistics. 
Instead of a parabolic orbit, the projectile moves over a straight path. 
When its impetus is spent, the object regains its “natural motion” and falls 
straight down. There is no room for curvature. In the 14th century Jean 
Buridan (he coined the term “impetus”) interpolated a short circular path. 
A notion of the true shape of the orbit starts with Galileo’s experiments.

Figure 3 | (Left) longbow men, from the Luttrell Psalter, ca. 1325–1335 (British 
Library). (Right) Hermann Tom Ring (1521–1596), Triomf van de dood, 
centre panel of a triptych, ca. 1550 (Museum Catharijneconvent, Utrecht.)

A bow8 essentially consists of the rigid connection of a pair of can-
tilever elastic beams (Figure 1) attached to a rigid grip. Sometimes 
it will be of a single piece (of Yew wood, like the English longbow, 
say), other times it may be a sophisticated composite involving a 
complex combination of materials, chosen for their diverse phys-
ical properties.

From basic elasticity theory [10] we find that the bending moment 
M of a cantilever beam is proportional to its curvature k (“curva-
ture” in the modern sense), one has M = k EI, where E is a material 
constant9 and I a geometrical constant.10

There is thus an immediate relation between the visible curvature 
and the muscular effort involved in loading the beam with elastic 
potential energy.11 The constants are experienced as the property of 
the bow as a tool, its “feel.”12

The actual physics of the bow is quite complicated [11]. However, the 
immediate relation between the visible curvature and the muscular 
effort is what counts here. It renders “curvature” a gut feeling. The con-
struction of the bow turns this gut feeling into a cognitive meaning.

By way of an aside, it might be suggested that the parabolic orbit of the 
arrow (or a thrown stone, say) might have evoked a feeling for curva-
ture. However, historical evidence pleads against that. Even in the six-
teenth century the impetus theory [12], framed by John Philoponus 
(ca. 530 ce, at Alexandria) was widely adopted (Figure 2).

13If you want to try, the painting is the centre panel of a triptych at the Catharijneconvent 
at Utrecht, where I live.
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I know from experience that it is an eerie feeling to be Death’s target 
when standing anywhere in front of this remarkable work. It must 
have made a deep impression on people at the time (mid 16th  
century). Death never misses!

Apparently, the plane of the bow wielded by death is not our trusty 
Euclidean plane. The reason is that the physical cause of death is a 
simultaneous order of pigments distributed on a wooden panel by 
the painter. The figure of death that you are visually aware of only 
exists in the mind.

The lost dimension is known as “depth” and it is ontologically dis-
tinct from the dimensions that span the picture plane [14–17]. The 
reason is that all points on a ray through the viewing point14 are 
projected on the same retinal location.

The physics needed here is Euclid’s (Euclid of Alexandria, ca. 300 
bce) Optics, which is essentially a geometrical information theory 
of optics [18].

The relevant geometry is the plane spanned by one dimension that 
has a parabolic metric and one that has an isotropic metric, often 
known as the “dual number plane.” [19–24].

The dual numbers15 are complex numbers of the form x + e y, where 
the complex unit is defined by e 2 = 0 ∧ e ≠ 0. Notice that e ∈, for 
it is neither zero (by design), nor positive or negative (because each 
would imply e 2 > 0, which is false).

Intuitively, e is so small you cannot even see at which side of zero it 
lies. That makes this geometry the natural model of vision. Euclid 
might have been the first to join the band wagon as he understood 
the ontological cleft between the dimensions.

Perhaps surprisingly, the whole depth dimension (an infinite line) 
is squashed into the infinitesimally thin layer of the picture plane! 
The mind does not need string–theory to sneak in an additional 
dimension (depth).

Consider the bow of the Death in the dual plane. It would be  
1/2e k u2, where the centre of the grip of the bow was placed at 
the origin. The constant k would be the “curvature” of the bow, 
the coordinate u the vertical dimension and the depth the “dual  
part” 1/2k u2.

In this geometry one defines the (signed) distance between  
z1 = x1 + e y1 and z2 = x2 + e y2 as ||z1 − z2||= x1 − x2 and – in case  
x1 ≡ x2 – the “special distance” (also signed) y1 − y2. One also defines 
the angular metric through the slope of 1 + e y as y [thus 1 + e y is 
the dual plane version of a protractor (Figure 4)].

Using the conventional definition, the bow is a “circle” in the dual 
plane, for the slope of the tangent line varies proportional to the 
arc length (Figure 5). The coefficient of proportionality is the  
“curvature” k.

The curve 1/2e k u2 is an example of a circle as a curve of constant 
curvature (Figure 6).16

The circle of the bow has essentially all of the familiar properties of 
the Euclidean circle. We compute its curvature as the dual part of 

d
du

u
2

2
21 2 =( / )ek ek , that is k.

I introduced the dual plane because the calculation of the curvature 

of a curve f(s) as k ( ) = ( )
2

2s d
ds

f s  is much more convenient than the 

Euclidean expression.17

Figure 4 | A protractor in the dual plane. The lines are drawn at equal angular increments, their slopes range from minus to plus infinity. The circle shows 
up the difference with the Euclidean angles. The circular protractor can be completed to a full circle, but the dual slopes are not periodic. The angle metric 
is the same as the distance metric – rendering this geometry much simpler than Euclidean geometry.

Figure 5 | The curve z = e x2/2 represents the circle. The slope at x is x, 
thus a fixed step along the line implies a fixed step in the angle. That is 
one definition of a circle.

14Either the anterior nodal point of the eye, or the center of rotation of the eye-ball, given the viewing distance it makes no difference.
15Also called “nil-square infinitesimals.”
16An example of a circle as a curve of constant radius would be u2 = 1, which consists of the two lines ±1 + e v (v ∈ (−∞, +∞)). It is the geometrical locus of all points at a fixed distance 
from a given point.
17Remember that the Euclidean computation of the curvature implies k ( ) = ( )

1 ( )
,

2 2

2 3 2s f s s
f s s

∂ ∂
+ ∂ ∂

/
( ( / ) ) /  which is not particularly pleasant.
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Curvature is simply the dual part of the second order derivative of 
a curve (Figs. 5 and 6). This is because the whole depth domain is 
shrunk to infinitesimal thickness, like in the painting. Thus |f  ′|<<1 
and consequently the awkward Euclidean expression simplifies to 
k  (s) ≈ f  ″.

“Pictorial space” (the world we “see in”, that is in the mind) is far 
simpler than “physical space” (the world we move in, to naive 
people the “real” world).

Notice that we have defined “curvature” as a second order deriv-
ative here, that is to say, in “infinitesimal” [25,26] terms.18 This is 
not something that would naturally occur to a Cro Magnon hunter, 
one of my forebears from the Upper Paleolithic, the Last Glacial 
Maximum, ca. 48,000–15,000 years ago.

Can we get rid of the derivatives? Well, yes, for most practical pur-
poses we could use small quantities instead of the infinitesimals. 
But let’s break loose of this altogether.

A straight curve collapses to a point when you put your eye on it. 
That is one way to check for straightness. This was no doubt the 
way a Cro Magnon hunter would check his arrows. It is important, 
for curved arrows do not kill rabbits.

Another way is to notice that something straight can be moved in 
itself, or that it can be applied in many ways to a copy of itself.

One might also understand curvature as the deviation from straight-
ness. The string of a strung bow looks “straight,” that is why it looks 
“different” from the bow itself, which looks “curved.”

So we may “know” straightness at the gut level. Then things that 
won’t fit a straight template might be denoted “curved.”

4. � HOW TO MEASURE DEVIATION  
FROM STRAIGHTNESS

In modern terms we would probably quantify the difference in 
terms of the root mean square deviations. After a simple shift and 

Figure 6 | Here the viewing direction is indicated by the arrow. I have 
drawn a number of circles (curves of constant curvature), the curvature 
increasing by factors of two. The highest curvature is too much for a bow.

picking convenient coordinates, we would measure the difference 
between the shape {x, y(x)} and the template {x, 0}. The variance 
would be the average of the quadratic deviation y(x)2 minus the 
square of the average of the deviation y(x).

But over what stretch should we compute it? We might leave that 
choice open for the moment and use a weighting function w(x) that 
depends upon a scale parameter t (say).

Many weighting functions are equally useful, but there are good 
reasons (because Δw = wt, thus w is the kernel of the diffusion equa-
tion [27]) to prefer

		        w x t
e

t

x
t

( , ) =
4

,

2

4
−

p
�

a form usually associated with Gauss. The weight is peaked at  
x = 0, extends approximately over the interval ( 2 , 2 )- +t t , and 
integrates to 1.

We define the mean of a function f(x) as á ñ
-¥

+¥

òf x w x t f x dx( ) = ( , ) ( ) .  
Then we define the root mean square (or standard) deviation of 
f(x) for the scale t as

		    SDt f f x f x= ( ) ( ( ) )2 2
1
2á ñ - á ñ( ) �

For f(x) = 1/2k x2 we find that SDt f t= 2k . Thus the curvature is 
proportional to the root mean square deviation from straightness. 
The estimate is the same at any point of the bow, which makes sense 
because the bow is a circle in the dual plane.

A different method is to apply the more complicated weight

	       w x t w x t
x

x t
t

w x txx ( , ) = ( , ) = 2
4

( , )
2

2

2

2

¶
¶

-
�

Then 
−∞

+∞

∫ w x t x dxxx ( , )
2

=
2

k k . (see Figure 7) Notice that the appli-

cation of this weighting function is equivalent to finding the second 
derivative of the weighted shape at the origin [27].

Using the diffusion equation we have blown up the infinitesimal 
domain [26] to the trusty domain of spatial intuition [27].

In either case we have got rid of the pesky infinitesimals. We do 
not require differentiations. We use only averaging over finite 
regions (weighted integration). The Cro magnon hunter might 
do the integration by eye measure – no need to understand the 
formulas.

Of course, the first estimate also picks up other orders (the second 
does better). One may consider contributions due to other orders, 
say anx

n/n!. For n = 0, 1 they can be nullified by fitting, but orders  
n > 2 will contribute, although relatively less for small t (their con-
tribution goes by tn/2) (see [28]).

The standard definition does not have such problems, because it 
implicitly assumes t = 0 – in itself nonsense from an empirical point 
of view. Our second method is the remedy for that, it replaces dif-
ferentiation with integration. The single point (whatever might be 
meant by that [26]) becomes a blurry finite region.

18“Infinitesimals” have been a major headache for ages. As a physics student I was drilled in 
the (then) correct mathematics. Of course, we secretly used the nil-square infinitesimals all the 
time, although we didn’t know it. Especially Leibniz’s triangle F(x + e y) = F(x) + e ydF (x)/dx 
proved very convenient. We felt guilty in interpreting “≈” as “=,” although F(x + e y) = F(x) + 
e ydF(x)/dx represents the full Taylor series! Nowadays curricula are being adjusted.
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The surfaces we consider are parameterized as {x, y, e z(x, y)}. We 
assume z(x, y) to be smooth and of finite slope, thus z zx y

2 2 <+ ¥. 
Such surfaces are known as (pictorial) reliefs [30,31].

In pictorial space the metric is ds2 = dx2 + dy2, except for “parallel” 
points that have zero distance, but different depth. Congruences of 
the first kind are simply the rotations and translations in the picture 
plane. In order to avoid unnecessarily complicated expressions we 
will ignore them.

We only consider congruences of the second kind [32]:

		
′
′
′ + + +

x x
y y
z x y z x yx y

= ,
= ,
= ( ) ( , ).d r r s

�

In Figure 9, one has some examples. Of course, there are also mixed 
transformations, but we ignore them. This is perhaps the simplest 
setting to consider the curvatures of surfaces.

Of the parameters d, rx, ry and s, d is a depth shift. We ignore it 
because observers have no notion of absolute depth, there is no 
such a thing.

The pair of parameters {rx, ry} is very relevant. These are the rota-
tions in pictorial space. To the Euclidean eye they look like shears.

The parameter s really parameterizes a similarity, that is a depth 
scaling. It is usually non-negative, although depth inversions are 
known to occur. In this paper we simply assume s = 1, but in prac-
tice it may vary all over the place.

Such congruences and similarities are freely executed as “mental 
movements” by human observers looking “into” a picture [32].

Figure 7 | At top the bow is compared with a straight template. The 
deviations are tinted red. The second row shows a weighting function 
w(x, t). Notice that its reach (where you see blue) is limited. The third 
row shows the weighting function wxx(x, t). The bottom row shows the 
product of the first and the third row. The total amount of purple stuff 
is proportional to the curvature at the centre. It is something one may 
approximately estimate by eye after applying a straight template.

5. � STEPPING A DIMENSION UP, THE  
DEVIATIONS FROM PLANARITY

Of course, one usually deals with surfaces (as boundaries of vol-
umes) in space, rather than curves in the plane. This is problematic, 
because our visual field of view is only a topological disk, not a 
volume. As things in the scene in front of you rotate about general 
axes this might well lead to surprises.

For instance, in Figure 8, we show an object that may appear (in 
silhouette) as a triangle, a square, or a circle. Yet it is hardly remark-
able, it might well be used as a piece in a board game, for instance.

It might be thought that the outline is not informative at all. That is 
not quite true [29], but close enough. We’re in an awkward situation 
(optically, that is), when rotations about arbitrary axes are allowed.

The essence of the problem is that so much remains hidden, that is 
the sad fact that objects have fronts (visible) and backs (not visible, 
or “optically specified” as people say). The rotations may change 
the visibility relations.

Here it helps a lot to move to pictorial space. It has three dimen-
sions, two belonging to the picture plane, or the visual field (your 
choice), whereas the third is generally known as “depth.”

The former two coordinates span a Euclidean plane, whereas the 
third is to be considered isotropic (remember e). Now we can do 
exactly the same things as before.

Figure 8 | This object has planar parts and regions that are part of 
right circular cones. In silhouette it might appear as a triangle (or 
cone), a square (or cube), or a circle (or sphere). Yet it evidently is 
neither of these.
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Figure 9 | Examples of congruences and similarities, here in the plane 
y = 0. (You should have no difficulties to imagine the spatial case.) At 
A I translate the ying-yang figure in depth. (All other examples suffer 
the same translation, I won’t mention that.) At B I applied a rotation of 
magnitude 1, at C that rotation has been reversed. At D I show a similarity 
with modulus 1/2, at E a similarity with modulus 2. Once you get used to 
these transformations, they look as simple (or actually simpler!) as their 
Euclidean counterparts.

This can be understood formally from an analysis of the ambiguity 
left by the optical structure that impinges on the eye [34]. This has 
also been a topic of research in computer vision [35].

Notice that the rotations of pictorial space do not permit an object 
to perform a full pirouette. In fact, they cannot change the visibility 
relations at all. What is seen at one moment is seen at the next, 
nothing new is ever revealed.

In a portrait painted en face you will never see the back of the head. 
It is another reason to feel happy in pictorial space, especially if you 
are a geometrician.

6.  THE CURVATURE OF RELIEF

Now we are ready to say what we mean by (local) pictorial shape: It 
is the invariant of the congruences defined above. It is easy enough 
to show that this boils down to a slight generalization of the notion 
of curvature discussed earlier.

We define the Hessian as the curvature:

		      H x y
z z
z z

xx xy

yx yy
( , ) =





 �

You will find it easy to check that the Hessian is invariant against 
the proper motions of pictorial space.

Because zxy = zyx, the Hessian is symmetric. As a symmetric matrix 
it has two real eigenvalues. A congruence of the first kind allows 
us to change to coordinates such that the Hessian is diagonal. In 
the two eigen directions we then have exactly the same situation as 
before in the case of the bow.

Thus there are two novelties. We have a special coordinate system 
(given by the eigenvectors) and two curvatures instead of one. Since 
the curvatures are signed (concave or convex with respect to the 

viewing direction), we obtain three qualitatively distinct cases: con-
vex–convex, concave–concave and convex–concave.

That means roughly, “like the outside of egg shells,” “like the inside 
of egg shells” and “like a horse’s saddle.” Of course, there are also 
degenerate cases, such as flat (“like a calm water surface”), flat– 
convex (“like the surface of columns”) and flat–concave (“like the 
inside of reeds”).

In the famous catalogue of all conceivable surface shapes, Leon 
Battista [36] lists all of these (I used his descriptions) except the 
saddle shapes. This is perhaps remarkable, because Alberti trans-
ported himself on a horse, whereas I use a car.19

Alberti’s first division is divided into three: 

Restaci a parlare dell’ altra qualità delle superficie, 
la quale è (per quasi) come una pelle distesa sopra 
tutta la faccia della superficie. E questa si divide in tre. 
Imperocchè alcune sono piane ed uniforme, altre sono 
sferiche e gonfiate, altre sono incavate e concave.

that is into planar, convex and concave. Then he introduces 
compound surfaces: 

a la superficie composta è quella, che ha una parte di 
se stessa piana, e l’altra o concava, o tonda, come sono 
le superficie di dentro delle canne, o le superficie di 
fuori delle colonne,...

One would perhaps expect the saddles here, but Alberti considers 
the cylinders (both ruts and ridges) instead. There is no mention of 
anything like a saddle shape.

Gauss famously related the curvatures mentioned here (called 
“extrinsic” nowadays) to the metrical relations intrinsic to the sur-
face. That is not a topic of this paper, but it implies that you have to 
crack a piece of egg shell in order to spread it out flat on the table –  
it simply “has not enough surface area” for that. Likewise, saddle 
surface have “too much surface area,” so you need to pleat them in 
order to force them flat.

What is important here is that Gauss defined two surface measures 
that each somehow summarizes the two curvatures in the eigen 
directions k1,2 (say). These are the “Gaussian curvature” k1k1 and 
the “mean curvature” k1 + k1. The thing I showed before (Figure 8)  
has zero Gaussian curvature overall and a non-zero mean curva-
ture only on its conical parts – except for the singular curves and 
points, that is. The two curvatures are simply the determinant and 
half the trace of the Hessian.

7.  FELICE CASORATI’S DOUBTS

The surface {x, y, x2/2} has mean curvature equal to one and 
Gaussian curvature equal to zero, surface {x, y, (x2 + y2)/2} has 
mean curvature equal to two and Gaussian curvature equal to 
one, whereas the surface {x, y, xy} has mean curvature equal to 
zero and Gaussian curvature equal to minus one. Both mean and 
Gaussian curvature may turn out to be zero for surfaces that are 
evidently non-planar.

19My driver’s seat is concave–concave rather than convex–concave because I point my legs 
forward instead of to the sides.
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This evidently disagreed with Felice Casorati (1835–1890) who 
apparently entertained the gut feeling that curvature should at least 
be a difference with planarity [37–39]:20

 ... elle ne saurait satisfaire les hommes en général; car, 
dans des cas assez ordinaires, elle ne s’accorde pas avec 
l’idée que tout homme, ayant ou non des connaissances 
spéciales de mathématiques, conçoit d’une manière plus 
ou moins vague et pourrait exprimer par les mots cour-
bure d’une surface dans un point.

...

Un géomètre peu soigneux pourrait donc dire, par 
exemple, que les surfaces cylindriques n’ont pas de cour-
bure, tandis que tout le monde croit qu’elles sont courbes, 
comme on apprend à les considérer et à les nommer dès 
les premiers pas dans la vie et dans l’école.

...

Voici donc de quelle manière je propose de mesurer la 
courbure d’une surface en un point, conformément à 
l’idée commune, dans les cas où il existe autour du point 
un fragment de la surface ayant partout un plan tangent.

A “good” curvature measure should only become zero for planes! 
Thus he defined the “Casorati curvature” as C x y= ( ) / 22 2k k+ .

This certainly works, but the way he explains the definition is 
hardly convincing. All that one may heartily agree on is

C caractérise par sa valeur zéro le manque total de cour-
bure, de mème que la première des deux courbures des 
lignes, que l’on a déjà l’habitude de nommer tout simple-
ment courbure.

Avec cette signification du mot courbure on peut dire:

Si la courbure est nulle en tout point, la surface est plane 
(la ligne est droite).

Il n’y a que la surface plane (resp. la ligne droite) dont la 
courbure soit nulle en tout point.

Casorati’s notion did not receive universal acclaim. In a reaction in 
the same journal Eugène Catalan remarked that to say a sphere and 
a pseudo-sphere can have “the same curvature” is intuitively absurd 
[40]. This objection hangs on the very notion of “curvature,” so a 
short excursion on that topic seems in order.

Surface curvature cannot be completely represented on a linear 
scale. If one ignores spatial attitude, one ends up with two param-
eters. (Think of the two principal curvatures, or the Gaussian and 
mean curvature). Thus the Casorati curvature is in itself insuffi-
cient to characterize the nature of the relief (Figure 10).

However, Casorati correctly identifies a measure of “how much cur-
vature.” This should be completed with a typification. Thus Catalan 
is right that the (unit) sphere and the pseudosphere appear different, 
but that does not prevent their curvature measure to be the same.

Unlike the principal curvatures, or the Gaussian and mean curva-
ture, one might desire to characterize surface curvature by way of a 
quantity and a quality. The Casorati curvature is a natural measure 
of quantity. The quality might be the ratio of principal curvatures, 
say. Years ago I introduced a convenient “shape index” based on 
that notion [33,41]. It distinguishes the (unit) sphere from the pseu-
dosphere, even though their “curvedness” is the same. The shape 
index is defined on an interval {−1, +1}, whose endpoints repre-
sent the umbilics (spheres). Shapes of opposite sign are related by 
a depth inversion, thus the pseudosphere resides at the origin [42].

In order to show how this works, I write a general quadric in terms 
of a linear combination of the sphere and the pseudosphere:

	 z x y t x y r x y s xy( , ) =
1
2

( ) ( ) 2 .2 2 2 2[ ( )]+ + − + �

(Notice that (x2 − y2)/2 and xy are congruent, because (x2 − y2)/2 = uv,  
where u x y= ( ) / 2+ , v x y= ( ) / 2- . The coordinate systems  
{x, y} and {u, v} are mutually rotated over p /4.)

The principal curvatures are k 1
2 2= t r s+ + , k 2

2 2= t r s− + , 
thus K = k1k2 = t2 − r2 − s2, H = k1 + k2 = 2t. Then the curvedness 

is C r s t= 2 2 2+ +  and I define the shape index as S t r s= / 2 2+  
(that is arctan((k1 + k2)/(k1 − k2))).

Since {t, r, s} = {C sin S, C cos S cos 2j, C cos S sin 2j}, the param-
eters {C, S, 2j} are special polar coordinates of “shape space.” 
The Casorati curvature is simply the distance from the origin. 
Fixing j factors out orientation, fixing C then leaves us with a 
semicircle (notice that j = j + p) that parameterizes the quality 
(the shape index).

I continue with a different motivation of the Casorati curvature. In 
this case the root mean square deviation definition works very well. 
For using the weight

	   
w x y t w x t w y t

e
x y

t
t

( , , ) = ( , ) ( , ) = 4
4

,

2 2
− +

p

�

we find that SDt x y x yx y t t C1 2( ) = 2 = 22 2 2 2/ k k k k+ + . Thus 
the silly Cro Magnon measure yields Casorati’s preferred answer!

Figure 10 | The sphere {x, y, −(x2 + y2)} and the pseudosphere {x, y,  
(x2 − y2)}. Both have the same curvature measure (Casorati curvature 4).  
Yet their “qualities” are very different.

20I read the Italian references years ago in a library, but unfortunately I have no copies. 
As a retired professor I have no facilities to acquire them now. I downloaded the French 
paper from the Utrecht University library.
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I merely preferred to change Casorati’s curvature into the “curved-

ness” ( ) / 22 2k kx y+  [33], because then the curvedness of a sphere 
with principal curvatures k1 = k2 = k  becomes k. This might fit the 
Cro Magnon hunter’s mind better.21 It certainly agrees better with 
my students and many academic colleagues outside the exact sciences.

This is not essentially different from Casorati’s curvature, of course.

8. � LEON BATTISTA ALBERTI’S ONTOLOGY 
AND ARTISTIC INTUITIONS

In order to get some feeling for the convex (or concave) and the 
saddle-like surfaces, here are some simple observations. The unit 
sphere (x2 + y2)/2 has indeed unit principal curvatures. An arbitrary 
line in the picture plane x0 + s cosj, y0 + s sinj can be seen as the 
projection of

x s y s
x s y s

0 0
0

2
0

2

, ,
2

,+ +
+ + +








cos sin
(( cos ) ( sin ) )

j j
j j

that is
1
2

( )
2

,0
2

0
2

0 0

2

( ) cos sinx y s x y s+ + + +j j

on the surface. This is just the rotated and translated unit circle.

Thus all curves on the sphere that project in straight lines are mutu-
ally congruent great circles. All have the same curvature, thus sur-
face patches at different locations are perfectly congruent. Indeed, 
you can move the unit sphere in itself.

Repeating this for the unit “pseudosphere” (x2 − y2)/2 (Figure 11), yields

1
2

( )
2

2 .0
2

0
2

0 0

2

( ) cos sin cosx y s x y s− + − +j j j

This shows that the curvature of curves that project on straight 
lines is cos 2j. Thus the principal curvatures are ±1, indeed con-
cave and convex.

The lines in the direction j = ±45° have zero curvature. Consider 
two of such lines that are parallel in the projection. These lines 
have different slopes, but they keep constant distance, like a railway 
track.22 Thus we find two mutually orthogonal families of parallel 
lines on the pseudosphere (Figure 11).

A Cartesian net of equally spaced lines in two mutually perpendic-
ular directions can be bended into pseudospherical surfaces. Thus 
we have a Cartesian net on a curved surface! But, of course, any 
oblique line is curved.

However, to the “Euclidean Eye” such a deformation is not a bend-
ing because the “railway tracks” are no longer equidistant.

In mechanics and modern computer science the Casorati curvature 
(in Euclidean terms) has become known as the “bending energy.”23 

This is related to continuum mechanics, the bending of plates. It 
immediately calls to mind the example of the bow. Might the expe-
rience with elastic deformations apply to higher dimensions (like 
surfaces)?

Nice as this would be, it is perhaps accidental. Too bad. The pri-
mordial curved surface is no doubt the outside of an egg shell. But 
it is not even possible to bend a flat sheet of paper into an egg shape. 
The situation is very unlike that in the case of the bow. Here Gauss’ 
discussion on intrinsic geometry becomes very relevant, as it was 
not at all for the bow.

In order to forge a flat sheet into some interesting surface the tailor 
uses cuts, seams and pleats, the cobbler and the brownsmith use 
extensive hammering to locally change the properties (the metric!) 
of the plate. Thus we lack the kind of experience we may have in the 
case of the curvature of beams.

In Euclidean space only spheres and planes can be arbitrarily moved 
in themselves. If you rub two solids together long enough, using 
some type of abrasive, they will automatically assume a spherical 
form, one convex, one concave. This is the time honored way to 
grind optical lenses. Aspherical surfaces were very hard to produce 
before the advent of computer controlled grinding machines.24 In 
order to produce a flat surface one works pairwise on three pieces.

For larger flats, say billiard tables, one has to proceed differently. 
Frequent testing with straight templates applied at different loca-
tions and in different directions is necessary.

The final “flatness” of such surfaces is defined statistically, much 
as we did in the curvature definition “against the grain.” Such tests  
and measures are an important part of various technologies.  

21Of course, I understand Casorati’s hesitation to draw the square root, after all, he was a 
mathematician.
22Such lines would appear “skew” to the Euclidean Eye. This is one definition of parallelity. 
Another one that is sometimes useful implies the same line in projection, same slopes, but 
different depths.
23For a quadric 1/2(a20x

2 + 2a11xy + a02y
2) (typically the leading part of a Taylor series, 

whose zeroth and first orders are ignored because accounted for) one defines the “bending 
energy” as 1 2( 2 )20

2
11
2

02
2/ a a a+ + .

Figure 11 | Hyperbolic paraboloid (Modellsammlung, Mathematisches 
Institut – Universität Göttingen [43]). This is the primordial “saddle 
surface.” A plaster model that derives from Felix Klein’s activities. 
(Klein actually held that his mathematics was about the models and 
not vice versa. He could be more against the grain than I am here.) 
The lines drawn on the surface show the remarkable “Cartesian net” 
discussed in the text.

24Thus grinding parabolic mirrors for telescopes involved much trial and error.
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The corresponding literature is completely unrelated to the mathe-
matical literature on curvature.

In the case of surfaces most of our understanding comes from 
haptic and visual experiences with found objects. Think of eggs, 
fruits, leaves, stones, landforms and so forth. Alberti was an intel-
lectual who really thought about the topic, but – apart from the 
degenerate cases with one or two vanishing curvatures – could only 
come up with concavities and convexities. He completely missed 
the saddle shapes. Yet saddle shapes are by no means rare. On a 
Gaussian random surface the saddle-like points are actually in the 
majority [28]!

Indeed, we have found that even modern Western intellectuals are 
largely “saddle–blind.” Why might that be?

If you dig for sculptor’s intuitions (they ought to be experts!) you 
find that the academies tell you to “go for the convexities, the con-
cavities (they probably include the saddles) will take care of them-
selves!” [44].

Given that the human or animal unclad body [45] has been a major 
topic for the sculptor since the earliest times (Figure 12), this actu-
ally starts to make sense.

The articulation of body surface (I’m not talking about extremities 
as related to the trunk) is due to the musculature, which is slightly 
softened by layers of fat and elastic skin. The muscles attach to 
bones and have their swelling bellies away from the point of attach-
ment. Thus the body surface is governed by dimples (the places 
where muscles attach to bony crests just below the skin), ruts (the 
grooves between muscle bodies) and ovoid shapes (the bellies of 
the muscles).

The result is that the body relief is similar to a bunch of grapes. 
Benvenuto Cellini (1500–1571)25 likened the treatment by 
Bandinelli – in an obviously pejorative manner – as similar to 
a sack of melons put in some corner [47]. I feel he had a point 
(see Figure 13).26

25Cellini’s biography reads like a fantastic rogue story. Moreover, you’ll pick up lots of 
interesting workshop practice and samples of Late Renaissance taste. There are numerous 
reprints and translations. I particularly like Goethe’s German one. The vita was started in 
1558 (age of 58). It suddenly stops in 1563 as Cellini departs toward Pisa.
26The passage reads: Well, then, this virtuous school [of Florence] says... that nothing 
worse was ever seen; his sprawling shoulders are like the two pommels of an ass’ pack-
saddle; his breasts and all the muscles of the body are not portrayed from a man, but from 
a big sack full of melons set upright against a wall. The loins seem to be modelled from a 
bag of lanky pumpkins;...

Figure 12 | The “Venus of Willendorf ” [46] is a small (11 cm) figurine, 
carved from oölitic limestone with a flintstone scraper and tinted with 
red ochre. It dates from European Upper Paleolithic (Old Stone Age) 
starting around 30,000 bce. Notice that it is almost completely made up 
of convexities, the saddle-like parts having been summarized as sharp 
V–grooves.

Figure 13 | The back of Hercules in the statue of Hercules and Cacus 
(1530–1534) by Bartolommeo (or Baccio) Bandinelli (1488–1560) at the 
Piazza della Signoria, Florence, Italy. Notice that Bandinelli’s treatment of 
Hercules is not all that different from that of the Paleolithic artist. There 
are almost only convexities meeting each other in (slightly softened) 
V–grooves.
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9.  MORE TO FOLLOW UP

Another reason for the more than coincidental dominance of con-
vexity is that objects of limited size tend to be convex. One sees this 
in beach pebbles, where the shapes are due to random abrasion [48].

In organic bodies one has the additional factor that it is good to 
maximize volume for a given area, as it counteracts drying out. This 
is obvious in many fruits. Indeed this type of optimality pops up in 
many physically/physiologically distinct settings (e.g. [49]).

These factors are in no way exhaustive. There are numerous pro-
cesses that play a role and the biologically relevant costs are diverse 
too. We tend to be sensitive to this and look with some pleasure on 
shapes that reflect some kind of intuitive optimum.

So much for a view on curvature that is frankly against the grain. 
However, I certainly feel that there is plenty of room for further 
research along these lines.
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