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1. INTRODUCTION

As autonomous systems and features become further integrated
into vehicles, software and electronics will account for over 50%
of the design overhead [1]. However, the current software and its
respective sub-systems have been demonstrated to be vulnerable to
cyber threats in controlled testing environments [24]. These types
of attacks demonstrate a clear increase in threat vectors and attack
surfaces for autonomous features and systems, while illustrating the
potential for impacting human safety [5]. In order to support sys-
tematic and reusable development practices focused on automo-
tive cybersecurity needs, this paper introduces automotive-focused
security design patterns to address cybersecurity vulnerabilities
associated with inward facing (i.e., intra-vehicle) and outward-
facing (i.e., inter-vehicle) communication.

The connectivity of modern vehicles to each other, third-party sys-
tems, and consumer devices increases the volume and pathways for
possible attacks. The increasing automotive security vulnerabilities
motivate the development of prevention, detection, and mitigation
techniques that take into consideration automotive-specific con-
straints. Formalizing and abstracting common problem and solu-
tion strategies (i.e., designs) into design patterns facilitates rigor-
ous development practices and promotes design reuse [6]. Com-
mon software security patterns enable developers to rigorously
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As automotive systems become increasingly sophisticated with numerous onboard features that support extensive inward and
outward-facing communication, cybersecurity vulnerabilities are exposed. The relatively recent acknowledgement of automotive
cybersecurity challenges has prompted numerous research efforts into developing techniques to handle individual threat vectors,
the pathways and threat surfaces by which an attack can be realized. Security design patterns have been developed for many
application domains (e.g., enterprise systems, networking systems, and distributed systems), but not much has been explored
for automotive systems. This paper introduces a collection of security design patterns targeted for automotive cybersecurity
needs. We leverage and extend the de facto standard template used to describe design patterns to include fields specific to the
automotive domain and SAE J3061 cybersecurity development guidelines.
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harden a system against security vulnerabilities [7]. While these
security patterns, along with security solutions such as encryption
and secure network protocols, have helped to harden many software
systems, the unique architecture of automotive systems and con-
straints on system performance necessitate application-specific
design strategies [8].

In order to leverage successful security patterns, while also
addressing the automotive constraints, we have specialized exist-
ing security patterns to account for automotive systems unique
architecture and constraints. This framework for hardening secu-
rity design and assessing security features can be applied to
current automotive systems comprising numerous automated
driver-assistance systems (ADASs) elements and extended to the
emerging fully-autonomous vehicles. Automotive-specific security
patterns enable developers to explicitly and rigorously address secu-
rity as part of the development process for automotive systems in
a proactive fashion. We introduce a template to describe the pat-
terns, the template extends a previously developed security pat-
terns template [9,10] to include fields, classification schemes, and
information specific to the automotive domain [11]. In addition to
the textual descriptions, we also include unified modeling language
(UML) [12] class and sequence diagrams to respectively describe
the structure and the behavior of a given solution strategy.

The automotive cybersecurity patterns leverage and extend previ-
ously developed security patterns to address vulnerabilities specific
to automotive systems, with solution strategies that adhere to con-
straints and contexts relevant to automotive systems and relevant
operating environments. As a preliminary step, we performed an
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extensive review of the research literature (i.e., state of the art), tech-
nical reports from regulation and standards bodies (e.g., [11,13]),
and obtained input from our industrial collaborators (i.e., state of
the practice). From these sources, we identified threat vectors and
attack surfaces, as well as techniques and/or solution strategies to
address the respective vulnerabilities. We distinguish vulnerabili-
ties and solutions that apply to onboard (inward) facing communi-
cation (e.g., wheel speed sensor and throttle position sensor signals
sent to power train control module) versus outward-facing commu-
nication sub-systems (e.g., telematics units and navigation systems
that communicate with cell towers and global positioning systems,
respectively). Based on the state of the art and state of the practice
reviews, as well as existing security patterns [7,9,10], we collated the
information to define a set of automotive cybersecurity patterns.
In order to facilitate their use, we provide a number of descriptors
for each pattern that are commonly used in security development,
including threat types using Microsofts STRIDE framework [14],
Viega and McGraw security principles [15] promoted by a given
pattern, and automotive cybersecurity development guidelines as
described in SAE J3061 [11].

The paper presents an ongoing effort with international industrial
collaborators working in automotive cybersecurity, including both
Tier 1 suppliers and original equipment manufacturers (OEMs) to
develop a repository of security patterns.1 These patterns are being
incorporated into development practices that focus on security and
its impact on safety for autonomous vehicles, involving different
levels of autonomy. The remainder of this paper is organized as fol-
lows: Section 2 discusses related work in the area of security and
design patterns. Section 3 overviews the vehicle’s cyber-threat sur-
faces. Section 4 discusses related state of the art security solutions in
automotive systems. Section 5 discusses the use of security patterns
in automotive systems. Section 6 provides the collection of secu-
rity patterns developed to date, organized according to those that
address inward facing and outward-facing communication, respec-
tively. Finally, Section 7 summarizes the work and outlines future
work.

2. DESIGN PATTERNS

Software design patterns make it easier to reuse successful systems
and architectures [16]. By using a known solution to a common
problem, developers are able to benefit from successful designs and
lessons learned from other developers. The original design patterns
by Gamma et al [16] describe a design pattern with four essential
parts: the name of the pattern, the problem addressed by the pat-
tern, the solution strategy, and the consequences of the pattern. Fol-
lowing this approach, several hundred abstract patterns have been
implemented for general use in software systems (e.g., [10,17,18]).

Security Patterns

While the design patterns developed by Gamma et al. are inten-
tionally abstract with the goal of being applicable to a wide range

'Our project sponsors involve international researchers and develop-
ers, as well as customers, who have provided feedback regarding the
patterns.

of problems, domain-specific constraints need to be considered for
the design. In the case of security patterns, threats to a system need
to be monitored using specific security mechanisms for the specific
context [7]. Following a similar format for describing a design pat-
tern, security patterns are also given a descriptive name, the secu-
rity problem addressed (e.g., a class of specific threats), a solution
strategy to prevent, detect, and/or mitigate the security vulnerabil-
ity, and a set of consequences [7].

Research in the field of security patterns has been active for almost
two decades [17,19,20]. The focus has been on capturing higher
level security mechanisms and organizing them into abstract pat-
terns, which has guided cross-application security patterns [21,22].
The aforementioned work underscores the wide use of security pat-
terns throughout different software systems, including distributed
systems [23], enterprise systems [7,18], and, more recently, cloud
computing systems [7,10], Security patterns apply to all phases of
the software development process, such as requirements gathering,
design, and implementation [20]. Within a collection of security
patterns, several abstract patterns exist, indicating more specializa-
tions of patterns (e.g., [7,18,24]). A study by Ito et al. [17] surveys
trends in security pattern research over the past decade.

Similar to general design patterns [16], security patterns have been
described using specific fields to capture use-cases, consequences
of design, etc. We leverage and extend a specific template devel-
oped by Wassermann and Cheng [9] and then refined by Konrad
et al. [25] that captures important areas of a security pattern,
namely: Name, Alias, Intent, Applicability, Motivation, Struc-
ture, Consequences, Known Uses, and Related Patterns.

3. AUTOMOTIVE CYBERSECURITY
VULNERABILITIES

In this section, we overview attack vectors of automotive systems
(i.e., interfaces or paths that an attacker uses to exploit a vulnerabil-
ity) [13], such as an open cellular or Bluetooth network. Of particu-
lar interest, given its long-standing and prevalent use, is the internal
communication system, the Controller Area Network (CAN) Bus
[26] that acts as a medium for a variety of ECUs on a vehicle. We
also overview other attack vectors according to the type of access
needed to perpetrate an attack (e.g., physical, remote).

Automotive Communication

The CAN Bus is the major networking communication infrastruc-
ture used within an automotive system [27]. It relies on a broad-
casting protocol that allows for any ECU attached to the CAN Bus
to both send and receive messages as predefined ECU behavior,
independent of the CAN Bus [28]. The CAN Bus is designed to
be lightweight and fast, and consequently lacks common commu-
nication protocol features such as authentication or encryption.
While data on a CAN Bus may carry identifying information to
be interpreted by the intended receiving ECU, the CAN itself does
not identify particular data frames, instead relying on a prioritiza-
tion scheme of message arbitration to control access to the CAN
Bus [29].

Potential security drawbacks to such a communication model
include vulnerabilities posed by the lack of message authentication,
such as spoofing and injection attacks. An injection attack makes it
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possible for an adversary to manipulate the functionality of an ECU
[30]. Because the CAN Bus has no default protocol for encrypt-
ing data frames on the network, the risk of compromising sensi-
tive data poses another security concern [27,28,31,32]. Finally, the
CAN message arbitration system can make it vulnerable to denial
of service (DoS) attacks through an attacked ECU, such as the tire
pressure monitoring system (TPMS) [3,33].

In addition to the CAN Bus, multiple technologies are increasingly
being used to handle the growing demands of automotive commu-
nication. For example, automotive wired networking technologies
include Local Interconnect Network (LIN), Media-Oriented Sys-
tem Transport (MOST), FlexRay, and automotive Ethernet; several
recent surveys have overviewed the respective vulnerabilities and
research challenges [28,34,35]. Rouf et al. also reviewed security
vulnerabilities for in-vehicle wireless networking [33].

Vehicle Ad-hoc Networks (VANETs) make use of a number of wire-
less inter-vehicle networking, such as dedicated short range com-
munications (DSRCs), long-term evolutionary vehicle (LTE-V),
and Worldwide Interoperability for Microwave Access (WiMAX)
[34]. With the increasing movement toward vehicle-to-vehicle
(V2V), vehicle-to-infrastructure (V2I), and vehicle-to-third-party
devices (V2X) communication [36,37], security and privacy chal-
lenges correspondingly increase [34,38].

Degree of Access

While numerous automotive threat surfaces have been identified,
we broadly categorize them by the type of access an attacker uses:
direct (i.e., physical), indirect, and remote [39].

Direct access targets include the CAN Bus, the OBD-2 port, and
the media/auxiliary port. The OBD-2 port provides a mechanism
for sub-system diagnostics and requires an attacker to be physically
plugged in as shown in experimental attacks [3,4,40]. The media
player and auxiliary ports in a vehicle are often connected to the
CAN Bus; and by physically inserting compromised files into the
new media device, an attacker can subsequently inject (malware)
code onto the CAN Bus [3].

Indirect access to a vehicle refers to compromising a device that can
be used as a medium to attack the vehicle’s sub-systems. Bluetooth
networks are commonplace in modern vehicles, and accessing the
vehicle’s internal Bluetooth network is feasible through a connected,
compromised device [3,4]. Similarly, if a diagnostic device has been
compromised and then attached to the OBD-2 port of a vehicle,
then the vehicle becomes vulnerable to a malicious attack. [3,4]

Finally, remote attacks have been demonstrated in several sce-
narios, where the attacker can be physically distant from the tar-
get. Through a vehicle’s telematics system, such as General Motors’
OnStar® or Hyundai’s Blue Link®, “white hat hackers™ have shown
the ability to attack using only an Internet connection [41]. With
more outward-facing communication (e.g., V2V, V2I, and V2X),
there is increasing risk for malicious actors to inject malware
through VANET: [37,38,42,43].

*Hackers who look for security vulnerabilities for the sole purpose of
hardening and improving the systems. https://us.norton.com

4. SECURITY SOLUTIONS FOR
AUTOMOTIVE SYSTEMS

Automotive security needs differ from security solutions used for
traditional computing-based systems due to the specific perfor-
mance constraints and requirements imposed by a vehicle’s archi-
tecture and communication infrastructure [35,44]. Specifically,
automotive systems face challenges with available communica-
tion protocols and the use of automotive-specific communication
architecture (e.g., CAN Bus, FlexRay, LIN, MOST), limited com-
munication resources, and stringent performance requirements for
safety-critical functionality [8,45]. Despite these limitations,
researchers have adapted existing security approaches to comply
with automotive system’s constraints, with a focus on authentica-
tion and encryption [46,47,48,49,50].

As mentioned previously, a common security issue for automotive
systems is the inability to authenticate communications. Without
the ability to determine what traffic is valid can expose a network
to spoofing, DoS, and other types of attacks. This vulnerability
can be addressed by using authentication protocols or intrusion
detection systems (IDSs). However, the traditional approaches for
these solutions are prohibitively expensive for an automotive net-
work (e.g., with respect to performance constraints). A method
for developing a more lightweight IDS is to base identification
of connected ECUs on clock-based finger-printing with predictive
algorithms to determine expected clock-skews of ECUs and sub-
sequently detect spoofed messages [46]. Similar to the clock-based
IDS, is the concept of a module-specific firewall. Rizvi et al. [51]
propose a firewall-like program installed on individual ECUs to
examine incoming packets in order to determine if the message
should be released to the ECU for processing based on a set of rules
and accepted subjects.

The VeCure framework [52] proposes another solution to address
the lack of authentication in the CAN Bus protocol [52]. VeCure
addresses message authentication by having ECUs transmit an
authentication frame with the message being broadcast. At the same
time, ECUs are segmented into trust groups where outward-facing
ECUs are given low trust. The high trust group ECUs are given a key
to verify message senders as a protection mechanism from poten-
tially spoofed outward-facing nodes.

Vai et al. [48] examine a framework for both data encryption and
message authentication in similarly constrained cyber physical sys-
tems. Using a co-processor that performs cryptographic primitives
in hardware as an independent cryptographic module, using the
least squared method (LSM), the researchers specify a communica-
tion bus security protocol where the cryptographic module behaves
like an ordinary ECU attached to the bus. Each ECU on the commu-
nications channel has a digitally-signed configuration file contain-
ing rules for communication with other ECUs, as well as at startup.
The LSM validates the configuration files and establishes secure
communication channels for the ECUs using the session keys.

A similar use of cryptography can be applied to VANETSs as
a method of authentication and privacy preservation [49]. The
LESPP system uses lightweight symmetric encryption and message
authentication code (MAC) generation for message signing. It also
contains a MAC re-generation for verification in order to authen-
ticate senders. Moreover, privacy is protected as only the system’s
key management center can expose a vehicle’s real identity.
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In order to prevent physical tampering to systems, the use of
tamper-resistant designs can prevent malicious actors from making
unsafe changes to a system[50]. The researchers propose the use of
system-on-chip design and nondetachable connections to prevent
ECU hardware alteration, or at least detect and provide evidence of
tampering.

In addition to security solutions for specific attack vectors, sev-
eral recent efforts have contributed surveys overviewing the range
of automotive cyber security vulnerabilities [3,4,28,34,44,53,54], as
well as general techniques to model the automotive security attacks
and their mitigation.

Several of the general approaches involve techniques for security
threat assessments and workflows to support security-aware devel-
opment [55,56]. For example, SAHARA [57] combines hazard and
risk analysis with security threat modeling for automotive sys-
tems. SAHARA has defined SecL to specify levels of security based
on resources needed perpetrate an attack, degree of knowledge
needed, and the threat of criticality (i.e., impact on safety). Secu-
rity Abstraction Model (SAM) [58] is a security modeling language
and methodology, customized for the automotive sector. Using
the SAHARA SecL levels to classify security threats, SAM can be
used to model security architectures and attack vectors [5], as well
as provide a model-based approach to evaluate security require-
ments using the Common Vulnerability Scoring System (CVSS)
criteria [59].

Ray et al. [44] recently overviewed the state of the practice
of automotive security architectures and identified challenges to
developing extensible automotive security architectures to balance
security mitigation, real-time performance constraints, and run-
time vulnerabilities.

5. SECURITY PATTERNS FOR
AUTOMOTIVE SYSTEMS

This section overviews the template used to describe the automotive
security patterns, as well as the security principles and automotive
security development guidelines used to characterize the patterns.
In addition to the template description, we overview the Viega and
McGraw security principles [15], the STRIDE threat categories [14],
and the SAE J3061 development guidelines for automotive security
[11], all of which is incorporated into the pattern descriptions.

Automotive Security Pattern Template

The automotive security patterns are described in a template similar
to that used by Konrad et al. [25].

+ Pattern Name - The name and classification of a pattern as
either behavioral or structural.

* Intent - How the pattern can be used and what security
problem it addresses.

* Motivation - Background on the security problem, and a
mechanism to solve, including examples and security
principles that are related.

* Properties - STRIDE properties [14] that are addressed
through this pattern.

» Applicability - Indicates the type of solution proposed:
prevention, detection, and/or mitigation of a given security
vulnerability.

 Structure - Includes the UML class diagram for the pattern and
the related descriptions of participants and collaborations.

* Behavior - Includes a UML sequence diagram and descriptions
of an illustrative scenario with the pattern.

» Constraints - Denotes constraints placed on the pattern
implementation stemming from the limited resources and
real-time constraints of the automotive system.

» Consequences - Discusses the effects of the pattern on the
areas of Accountability, Confidentiality, Integrity, Availability,
Performance, Cost, Manageability, and Usability following the
template from Wasserman and Cheng [9].

* Known Uses - Discusses examples of this pattern’s use in an
automotive setting.

* Related Patterns - Any design patterns or security patterns
that relate to the given pattern.

5.1. Security Properties Using STRIDE
Threat Framework

STRIDE is a component of Microsoft’s Security Development Life-
cycle [14] framework used to categorize security threats to a sys-
tem. Along with threat categorization, STRIDE incorporates a set
of information technology properties that correspond to the given
threats. Table 1 outlines the STRIDE threats, the corresponding
information technology properties, and example security questions
related to the properties. While STRIDE is applicable to general
cybersecurity vulnerabilities, other efforts have also explored how

Table1 STRIDE threats and properties [14].

Threat Property Example Security Question(s)

Addressed

Spoofing Authentication ~ Does the system use multi-factor
authentication? Does the system
enforce secure credential creation,
use and maintenance principles?

Can the system detect and prevent
parameter manipulation? Does
the system protect against
tampering and reverse
engineering? Were secure
software design principles
followed during development,
including third-party software?

Does the system verify and log all
user actions with attribution?

Does the system follow standard
encryption practices to secure
connections?

Was the system built and tested for
high availability (e.g., fuzz testing
and load testing)?

Does the system support the
management of all users and
privileges?

Tampering Integrity

Repudiation Nonrepudiation

Information
Disclosure

Confidentiality

Denial of
Service

Availability

Elevation of Authorization

Privilege
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STRIDE can be applied to the automotive domain, such as the
SAHARA project that extends automotive hazard and risk analysis
with STRIDE-based analysis [57].

Using the STRIDE framework in the pattern template assists devel-
opers in connecting the threats and their corresponding properties
to patterns. Our industrial collaborators suggested the use of the
STRIDE system in the pattern descriptions given their common use
in industrial contexts. The STRIDE descriptors further facilitate the
identification of appropriate patterns to use for a given problem/
solution context.

5.2. Guiding Principles

Following a template similar to that used by Konrad et al. [9,25],
several security principles are used to help motivate the problems
that the security patterns are intending to solve. The following secu-
rity principles from Viega and McGraw [15] are incorporated into
the template.

* V1 - Secure the Weakest Link - Securing the most vulnerable
piece of an application (e.g. network access points or interfaces).

* V2 - Practice Defense in Depth - Promote several layers of
security throughout an application, which will ensure
redundant security if one layer fails.

* V3 - Fail Securely - In the case of a system failure, ensure that
unauthorized access to the system or information is not
possible.

* V4 - Follow the Principle of Least Privilege - Give actors in a
system the lowest degree of access/clearance necessary to carry
out a given task.

* V5 - Compartmentalize - Keep sub-systems separate from
each other so that a security failure in one will not compromise
the others.

* V6 - Keep it Simple - Using unnecessarily complicated
procedures or systems may lead to unforeseen security
vulnerabilities.

* V7 - Promote Privacy - Ensure personal information and
sensitive data is only accessible by those with ownership or
given consent.

* V8- Remember that Hiding Secrets is Hard - Security critical
information such as passwords are not easily kept safe and
secret. Therefore, designers must be wary of compromised
accounts/sub-systems affecting the whole system.

* V9 - Be Reluctant to Trust - Sub-systems should not rely on
other sub-systems being secure and must enforce security
against all actors that interface with them.

* V10 - Use Community Resources - Community resources are
often more secure than individual solutions due to the large
number of developers.

We also used guiding principles for developing secure automotive
systems defined in SAE Standard J3061 [11] to explicitly relate the
security patterns to the industry standards for automotive systems.
Our industrial collaborators also indicated that applying J3061

would potentially facilitate more industrial collaborations between
development organizations. While the principles share common
principles/objectives with those from Viega and McGraw [15],
J3061 captures the principles in the specific context of the automo-
tive system. They are as follows [11]:

* J1- Protect Personally Identifiable Information and Sensitive
Data - Ensure personal information and sensitive data is only
accessible by those with ownership or given consent.

* J2 - Use Principle of Least Privilege - Give actors in a system
the lowest degree of access/clearance unless necessary.

* J3 - Apply Defense in Depth - Promote several layers of
security throughout an application. This will ensure redundant
security if one layer fails.

* J4 - Prohibit Software Changes that have not been
Thoroughly Analyzed and Tested - Preventing software from
being changed without being thoroughly tested prevents
unforeseen security flaws in a system.

* J5 - Prevent Vehicle Owners from Making Unauthorized
Changes - Along with J4, changes to a vehicle that are not
planned thoroughly may miss critical security flaws leading to
system vulnerabilities.

5.3. Overview of Automotive Security
Patterns Repository

The current repository of automotive security patterns has been
drawn largely from automotive security solutions described in
recent research literature, where we leverage the intent of previ-
ously developed security patterns [7,23]. These patterns have been
developed with guidance from our industrial collaborators, who
have developed additional patterns for internal use, as well as aug-
mented their development process to include the use of our secu-
rity patterns. Table 2 categorizes the automotive security patterns
to date in the context of their applicability (i.e., prevention (Prev),
detection (Det), and/or mitigation (Mit) of security vulnerabili-
ties) and related security principles/guidelines as defined by Viega
and McGraw (prefixed with “V”) and by the SAE J3061 automotive
cybersecurity guidelines (prefixed by “J”). Next, we include a brief
description for each of the patterns in the repository, including cita-
tions to known realizations in the automotive domain.

» Authorization provides a structure that facilitates access
control to resources [48].

» A BlacKklist pattern intends to keep track of the traffic of
potentially malicious addresses in a network. Nodes in the
network use the Blacklist to block traffic originating from the
malicious nodes [53,60].

* The DDoS Redundancy pattern is intended to make a resource

or network more resilient to a distributed denial of service
(DDoS) attack by providing redundant resources in case a
resource becomes inundated with service requests [43,61].

* Pattern Firewall designs a structure that allows for network
traffic to be filtered by a set of predefined rules to prevent
malicious intrusion (e.g., securing ECUs individually [51]).
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Table 2  Applicability and Viega McGraw [48]/]J3061 principles of select patterns [11].

Pattern Name Applicability V1 V2,]3 V3 V4,72 V5 V6 V7,J1 V38 A% V10 J4 IE
Authorization Prev X X X

Blacklist Mit/Prev X X X

DDoS Redundancy Prev/Mit X X X

Firewall Prev/Det X X X

Multi-Factor Authentication Prev X X X

Multilevel Security Prev/Mit X X X X X

Signature IDS Prev/Mit/Det X

Symmetric Encryption Prev X X

Tamper Resistance Prev/Det/Mit X X X X
Third-Party Validation Det/Mit X X

DDos, Distributed Denial of Service; IDS, Intrusion Detection Systems.

o The Multi-Factor Authentication pattern is used to provide a
redundant security measure in authenticating an actor or a
message. By enforcing an additional level of authentication,
malicious actors can be prevented from attacking if a node or
single credential is compromised [62].

* Multilevel Security is intended to provide a mechanism for

handling access in a system with various security classification
levels [52].

* Signature IDS provides a mechanism for detecting anomalies

in network traffic by using a baseline characteristic of the
(communication) traffic [46,63].

* Symmetric Encryption is used to encrypt messages (between

vehicles and with infrastructure) so that only a sender and
receiver can read the contents [49].

* A Tamper Resistance-based module deters unauthorized

changing of a system by preventing alterations, or preserving
evidence of alteration [50].

* The Third-Party Validation pattern is intended to provide

validation of messages broadcasted in a given network. If a
spoofed message is sent to a node and the receiving node
cannot validate the message with a trusted node somewhere
else in the network, then the receiving node can disregard the
message [43].

6. REPOSITORY FOR AUTOMOTIVE
SECURITY PATTERNS

This section presents the collection of the automotive security pat-
terns, described according to the template from Section 5. Based on
the development process and the industrial feedback, the patterns
are organized according to those that address security vulnerabili-
ties due to inward facing communication and those that are outward
facing, respectively. Underlined Helvetica refers to pattern names,
in-line italics refers to UML diagram elements (participants), and
courier font refers to security principles/guidelines.

6.1. Security Patterns for Inward Facing
Communication

The following patterns are more applicable to inward facing
communication: Authorization, Firewall, Multilevel Security, and
Tamper-Resistant Module.

6.1.1. Authorization

The Authorization pattern is a Structural Security Pattern.

Intent

Authorization provides a structure that facilitates access control to
resources.

Motivation

Many systems need to restrict access to their resources according
to certain criteria (e.g., a security policy) [7]. In automotive sys-
tems, inadequate authentication and authorization protocols have
exposed the system to a variety of security exploits such as attacks
on inter-vehicle networks [28], spoofing ECUs [30], and various
other exploits [2,3]. In the case of Cranchelli et al. [48], the moti-
vation for developing an authentication protocol for a communi-
cations bus, similar to a CAN bus, comes from the potential for
ECUs and ECU messages to be spoofed. According to SAE standard
J3061, preventing unauthorized access to data as well as control-
ling component privileges are key principles in developing auto-
motive cybersecurity for a system[11]. According to Viega McGraw
[15], the principle of being reluctant to trust improves the systems
abilities to mitigate any security exploits a sub-system may have.
This is particularly applicable to an automotive system, as many
components come from different principle, and increasingly, vehi-
cles have more communication with external entities.

Properties

The Authorization can be used to satisfy the Authentication prop-
erty, and the Authorization property.

Applicability

Authorization is applicable to attack Prevention.

Structure

The Authorization structure of a system can be captured in terms
of their relationships (Figure 1). Active entities are represented by
instances of a Subject class and passive resources by instances of
a Protection Object class. Between those main participants exists
a relation that portrays which Subject is entitled to access certain
objects. The properties of this relationship are organized in the
association class Rights. The objects of this class define the type
of access, transfer conditions, and constraints that restrict the use
of Rights.
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access_type
constraint

transferable : boolean

checkRight(}

Subject

Protection Object

Authorization

Figure 1 Class diagram for Authentication Pattern.

Participants

The following section describes the participating classes in the pat-
tern structure:

* Protection Object

- Represents passive resources of the system that are accessed
by Subjects.

* Rights

- Defines the properties of the authorization rule between
Subject and Protection Object.

— The access type property describes which kind of access of
the current Rights object grants. Commonly, this property
holds values in the style of read, write, execute, . . .

— The constraint property is a predicate that describes under
which circumstances the current Rights object is valid and
may grant a certain privilege.

- The transferable property determines whether a right is
transitive and its connected Subject may grant the right to
other active entities.

* Subject

- Represents active entities that need to access Protected
Objects in accordance to their Rights.

Collaborations

Different Subjects in the system want to access Protection Objects. In
order to make use of a certain resource they need to request access
to it from the responsible controlling instance. This instance will
check if an association class between the Subject and the Protected
Object exists that justifies the required access request. Depending
on this examination, access is granted or not.

Behavior

A Subject wishing to access a Protected Object will request access ata
Checkpoint Object (Figure 2). The Checkpoint will request the rights
pertaining to the Subject, and if approved, will forward the request
to the Protected Object.

Constraints

In an automotive system, example constraints on an Authorization
pattern include the performance of the authorization protocol and
the amount of resources it may require. Because a vehicle is limited
in the resources it has available (e.g., CPU and memory), there is a

need to perform authorization efficiently. In addition, the need for
real-time execution; where multiple Subjects may be sharing access
to a Protected Object, delay is often unacceptable.

Consequences

Table 3 describes consequences in implementing the pattern.

Known Uses

As mentioned in the motivation section, Cranchelli et al. [48]
has developed an authorization module for a shared communica-
tion bus to authenticate and manage authorized communication
between ECUs on the bus [48]. It is able to authenticate ECUs on
the bus at system start-up, and by using digital signatures, authorize
ECUs interactions with one another.

Related Security Patterns

The Check Point pattern can be used to examine requests by using
the structure of the Authorization pattern. The RBAC or Roles pat-
tern is an extended version of this pattern.

Supported Principles

The Authorization pattern should be used in combination with
Principle 4 (principle of least privilege) to assign the user’s rights.
Furthermore, Authorization can be used to compartmentalize
(Principle 5) the system and reduce the impact of a security breach.
For example, an attacker that illegally manages to authenticate as
user A, has only the rights user A would have. Given a restrictive
security policy, the enforcement of access rights promotes privacy
(Principle 7).

6.1.2. Firewall
6.1.3. Pattern name and classification

Firewall is a structural security pattern.

Intent

A firewall allows for network traffic to be filtered by a set of prede-
fined rules to prevent malicious intrusion.

Motivation

Application firewalls allow for control protocols to be placed on
traffic accessing specific services in a sub-system. This may be
appropriate when system level protocols are not able to capture the
requirements of application level control [7]. In an automotive net-
work, unfiltered traffic can result in attacks on system components
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: Subject - Checkpoint

| 1: requestAccess() J|_

1.1: checkRight()

1.2: approved ()

<_ ______________

|
|l.3. forwardRequesti]|

1.5: returni)

Figure2 Sequence diagram for Authentication Pattern.

Table 3 Consequences for Authorization Pattern.

Accountability: Not Affected

Confidentiality: Can be improved by specification and rigorous
enforcement of rights.

Integrity: Can be improved by specification and rigorous
enforcement of rights.

Availability: Can be improved by specification and rigorous
enforcement of rights.

Performance: The system performance might be derogated by

extensive right checks and the evaluation of the
rights constraint predicates. This issue is of
particular concern in a real-time environment.
Cost: Cost is not significantly affected by the
application of this pattern. May require
additional hardware to perform authentication.

Manageability: Modify to account for automotive systems, e.g.,
ECUs, communication privileges, etc., instead of
traditional computing terminology.

Usability: If the access rights are checked extensively the

user might recognize a loss of performance.
Authorization may limit utilization of shared
resources, impede safety-critical sub-systems.

from malicious traffic, as well as from compromised system com-
ponents. On a CAN Bus, e.g., externally facing ECUs such as a
media player can be compromised and as a result present a threat to
other ECUs on the CAN Bus. Rizvi et al. [51] specifically addressed
this scenario in their work. As it pertains to SAE J3061, the use of
Firewall promotes the principle of practicing defense in depth, by
securing ECUs on an individual basis [11]. This pattern also pro-
motes the Viega and Mcgraw principles of Reluctance to Trust and
Compartmentalization [15].

Properties

The Firewall can be used to satisfy the Authentication property, the
Authorization property, the Integrity property, and the Nonrepudi-
ation property.

Applicability

The pattern is applicable to attack Prevention and attack Detection.

L.4: returni)

Structure

A Client accesses a Service through a Firewall (Figure 3). The Fire-
wall references the rules which are represented by a Policy Object
and aggregated in the Policy Base Object. The Firewall consists of
the Policy Authorization Point, where the rules and identities for
the Firewall are centrally stored. The Firewall also consists of sev-
eral Policy Enforcement Points which check accesses to a particular
module. The data flowing through the Firewall is checked by the
Content Inspector.

Participants
* Client
- Actor requesting access through the Firewall.
o Application
- Module protected by Firewall, composed of Services.
 Firewall

- Enforcement and access point through which the Client
accesses an Application’s Services.

* Policy Authorization Point

- Central collection of access policies and identities used by
the Firewall.

* Identity Base
- Collection of authorized Identities.
* Policy Base
- Collection of authorized Policies.
* Policy Enforcement Point
— Checks access to Applications
» Content Inspector

- Checks data flowing through Firewall
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Figure 3 Class diagram for Firewall Pattern.

Collaborations

A Firewall can act as a mediation point for many Applications and
many Clients. An Application is composed of Services. A Firewall
is composed of a Policy Authorization Point, possibly several Policy
Enforcement Points, and a Content Inspector. The Policy Authoriza-
tion Point is composed of an Identity Base and a Policy Base which
are respectively composed of Identities and Policies.

Behavior

A Client begins by requesting a Service from an Application through
the Firewall (Figure 4). The Firewall forwards the request to the Pol-
icy Enforcement Point where a Policy Authorization Point is asked
to check the Client’s access privileges by looking up the Identity and
Policies in the Identity Base and Policy Base, respectively. If access
is granted, then content of the request is checked by the Content
Inspector and finally sent to the Application to service the request.

Constraints

In an automotive system, limited and shared resources limit the
extent of Firewall usage. Given the constraints of a real-time
environment, overhead incurred by processing messages may affect

critical response time. Finally, given a variety of different ECU ven-
dors, there can be difficulty in developing a uniform Firewall sys-
tem and enforcing the practice.

Consequences
See Table 4.

Known Uses

As described previously, a solution to systemic risk of attack on the
CAN network given the compromising of an ECU was proposed
by Rizvi et al. Here, firewall-like programs installed on individ-
ual ECUs examine incoming packets to determine if the message
should pass to the ECU for processing [51].

Supported Principles

Firewall pattern promotes Principle 1 (Secure the Weakest Link),
Principle 4 (Least Privilege), and Principle 9 (Be Reluctant to
Trust).

Related Security Patterns

The pattern is related Authorization and Role-Based Access [7].



60 B. H. C. Cheng et al. / Journal of Automotive Software Engineering 1(1) 51-77

 Client X : g : ldentityBase : PolicyBase : Contentinspector : Application
ApplicationFirewall PolicyEnforcementPoint PolicyAutharizationPoint

T T T T T T T T
| | | | | | | |
| | | | | | | |
| | . 1: checkAccess() | | | | |
| _ | L 1.1: authenticate() | ! | !
| |2:requestSenvicel)| | 317 requestServicel) } : :
1.2: return() | | |
K ————————————— | | |
| | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
1.3: checkAccess() | | | |
| ! | |
| | |
1.4: accessGranted() L : :
_< | | |
| 2.1.1: checkContent(}| | | | |
f f f P |
! 2.1.2: return() ! ! !
S S ool B | [ |
| | | |
| | | | |
-— | | | | |
| | | | | |
| | [2.1.3: accessService() | | | |
} 2.1.4: return() : : } : ol
| | | | | |
| e —————————— | | | | |
| | | | | |
| | | | | |
| ( | | | | |
i 2.2: logl) I | | | \ |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

Figure4 Sequence diagram for Firewall Pattern.

Table4 Consequences of firewall pattern.

Accountability:  Accountability Is Not Affected

Confidentiality: ~ Confidentiality can be better protected by controlling
access to a particular resource.

Integrity: Integrity of the system is better maintained by
enforcing defense on an individual-module basis.

Performance: Performance of the system may be affected by
overhead of validating senders through the Firewall.

Cost: May require additional hardware.

Manageability: ~ May require additional management overhead for
managing individual ECU compliance and
uniformity of a protocol across vendors.

Usability: Usability of system resources may be affected by

overhead of the Firewall.

6.1.4. Multilevel security

Multilevel Security pattern is a structural pattern.

Intent

This pattern is intended to provide a mechanism for handling access
in a system with various security classification levels.

Motivation

In many systems integrity and confidentiality of data need to be
guaranteed [7]. In an automotive environment, certain resources
are critical to system and user safety (e.g., ABS braking and power
steering) and must be given a higher degree of access control. More-
over, on an automotive communication network, e.g., some ECUs
might be externally facing (i.e., communicating with external enti-
ties) and are consequently more susceptible to compromises. By
segmenting access by degrees of trust in a multilevel security hier-
archy, system critical resources can be given this higher degree of
access control, and resources more susceptible to compromise can
be given limited trust, thus ensuring a higher degree of overall secu-
rity in the system. In the work by Wang and Sawhney [52], the
researchers address the problem of different levels of access con-
trol, differentiating between externally facing ECUs and those that

manage more system critical components [52]. According to SAE
J3061 Standards [11], key cybersecurity principles include protect-
ing sensitive data, using the principle of least privilege, and apply-
ing defense in depth. A Multilevel Security pattern achieves the
aforementioned objectives by securing sensitive resources from less
trusted entities, giving individual system components privileges
to use other system resources only if they are trusted, and finally
ensuring that interactions between different components is authen-
ticated on a case-to-case basis.

Properties

The Multilevel Security can be used to satisfy the Authorization
property, and the Confidentiality property.

Applicability

The pattern is applicable to attack Prevention, and attack
Mitigation.

Structure

To represent the Multilevel Security pattern, for each Subject, there
exists an instance of the Subject Classification class and for each
Object an instance of the Object Classification class (Figure 5). These
instances are used to aggregate a Subject’s and Object’s respective
security levels and categories.

Participants
* Object Category

- Defines a category to which an Object belongs.
* Object Classification

- Determines the security classification of an Object (passive
resource that is accessed by Subjects).

— The Object’s security classification is represented by a set of
Object Categories and Object Levels.
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Object Level

- Defines the security level of an Object.

Subject Category

- Defines a category to which a Subject has access.
Subject Classification

- Determines the security classification of a Subject (active
entity that accesses Objects).

- The Subject’s security classification is represented by a set of
Subject Categories and Subject Levels.

Subject Level

- Defines the security level of the Subject.

Collaborations

The classes Subject Classification and Object Classification contain
a set of Category and Level classes. This set determines the security
classification of the respective Object. Access will be granted if the
Classification of the requesting Subject dominates the Classification
of the Object. The Behavior section explains in detail how to deter-
mine whether one classification dominates a second one.

Subject
Classification

CanAccess->

61

Behavior

In the Multilevel Security pattern, the Subject requesting access to
a resource will request access at the Checkpoint (Figure 6). The
Checkpoint then obtains the Classification of both the Object and
the requesting Subject. If the requesting Subject’s classification dom-
inates the Object, i.e., has an equal or greater security level, then the
request is forwarded.

Constraints

In a real-time environment, such as that of an automotive system,
verification of clearance must be a quick and efficient process in
order to minimize delays in access to resources.

Consequences

Table 5 describes the consequences of using the Multilevel Security
pattern.

Known Uses

As mentioned previously, the VeCure system seeks to segregate
access to certain ECUs by differential degrees of trust. Using
multi-tier trust circles, the system is implemented to keep core sys-
tems safe from external facing ECUs on a CAN bus network [52].

Object
Classification

X;

Subject
Category

*

Subject
Level

Figure 5 Class diagram for Multilevel Security Pattern.
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T
1.4: return()
< ____________ - =
|
1
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|

Figure 6 Sequence diagram for Multilevel Security Pattern.
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Table 5 Consequences of multi-level security pattern.

Accountability: Not Affected

Confidentiality: User access is controlled according to the rules
that are stated in the Bell-LaPadula [4] model in
order to guarantee confidentiality of data.

Integrity: Biba’s model [28] and its rules establish integrity.
Idea of circles of trust in data received.

Availability: Not affected.

Performance: The evaluation of access rights can derogate
performance.

Cost: Establishing a multilevel security system can be
costly. All subjects and objects need to be
classified in certain sensitivity levels. May
require additional hardware support.

Manageability: Not affected.

Usability: Subjects may be limited in what sub-systems they

communicate with.

For example, messages from the externally facing OBD-II port and
Telematics systems are considered to be in a lower trust group than
the nonexternally facing ECUs of the higher trust group, such as the
ABS braking system [52].

Related Security Patterns

The Check Point pattern may be used to enforce the Multilevel
Security structure, which can be provided in Session object.

Supported Principles

The Multilevel Security pattern and its mechanism of granting
access to subjects implements the principle of least privilege
(Principle 4). Furthermore, it facilitates compartmentalization
(Principle 5) and reduces the impact of a security breach. Promot-
ing privacy (Principle 7), Hiding secrets is hard (Principle 8), and
Reluctance to trust (Principle 9) are key ideas of the Multilevel
Security pattern.

6.1.5. Signature-based IDS

Signature-based IDS is a structural-based security pattern.

Intent

The pattern provides a mechanism for detecting anomalies in net-
work traffic by using a baseline characteristic of the traffic.

Motivation

On an open network, there is a need for detecting malicious traf-
fic as soon as it occurs to prevent damage to a system [7]. In an
automotive network such as that used with the CAN, there is no
mechanism for detecting malicious traffic in the protocol, such as
a spoofed ECU. By detecting deviations from a baseline behavior,
such malicious activity can be detected. SAE J3061 emphasizes the
need for comprehensive responses to cybersecurity incidents [11].
A component of this response is the ability to detect intrusions and
respond quickly. The pattern supports the principle of Reluctance
to Trust [15] as authenticity is always verified before a message is
allowed to pass.

Properties

The Signature-based IDS can be used to satisfy the Authorization

property, and the Integrity property.

Applicability

The Signature-based IDS is applicable to attack Detection, attack

Prevention, and attack Mitigation.

Structure

The Signature-based IDS intercepts the access request for a service

(Figure 7). The Event Processor processes the request to parse the
relevant Signature Information. The Attack Detector then tries to
match the Signature Information against the known signature infor-
mation to determine if the Signature is known. If the Signature is
unknown, then the appropriate Response is issued [7].

Participants

* IDS: Intercepts messages and performs proper action given a
Response

* Event Processor: Obtains Signature information from message
» Attack Detector: Checks Signature against known signatures

* Signature Information: Has ID of known actor and the
corresponding Signature

o Signature: Identifying characteristic of actor

* Response: Communicates signature results back to IDS for
message handling

Collaborations

The IDS has a one-to-one relationship with the Event Processor
and forwards requests to be processed. The Event Processor collab-
orates in a one-to-one relationship with the Attack Detector that
obtains processed data from the Event Processor. The Attack Detec-
tor includes the Signature Information of known entities. The Attack
Detector has a one-to-one relationship with the Response object
that formulates the response given the results of the Attack Detec-
tor. Finally the IDS has a one-to-one relationship with the Response
object that forwards the correct response to the IDS.

Behavior

A message is sent from a source to an intended destination node
(Figure 8). The Signature-based IDS intercepts the message and

determines if the Signature is known to the system. If the sender is
unknown, then an appropriate Response is raised [7].

Constraints

As an IDS analyzes traffic before the messages are sent to the
intended receiver, there is overhead incurred when using the pat-
tern. The solution provided by Cho and Shin [46] utilizes a predic-
tive algorithm implemented in hardware to decrease the processing
time in order to minimize the overhead.



Consequences

Table 6 describes the
Signature-based IDS pattern.

Known Uses

An example of a lightweight IDS for CAN bus was proposed by Cho
and Shin [46]. Here, the system used clock-based finger-printing
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consequences of using

and predictive algorithms to determine expected clock-skews of
ECUs, thus enabling the detection of spoofed messages and authen-

the .
tic ones.

Related Security Patterns

The pattern is a specialization of the Abstract IDS pattern and is
related to the Firewall pattern, another access control pattern for
networks [7].
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Figure 7 Class diagram for Signature Intrusion Detection Systems (IDS) Pattern.
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Figure 8 Sequence diagram for Signature Intrusion Detection Systems (IDS) Pattern.
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Supported Principles
Principals supported by the Signature-based IDS include Principle

9 (Be Reluctant to Trust), as the IDS intercepts messages to ver-
ify the identity of the sender before allowing it to access protected
resources, and Principle 3 (Fail Securely).

6.1.6. Tamper resistance

Tamper Resistance is a structural based security pattern.

Intent

A Tamper Resistance-based module deters unauthorized chang-
ing of a system by preventing alterations, or preserving evidence of
alteration.

Motivation

In a given system, altering certain modules may lead to unpre-
dictable and potentially dangerous system behavior. In an auto-
motive system, this can result in dangerous vehicle functioning
and increased susceptibility to malicious attacks. Work by Wolf
and Gendrullis notes the potentially dangerous consequences of

Table 6 Consequences of signature-based IDS pattern.

Accountability: The Signature-Based IDS Allows a System to Be
Accountable for the Authenticity of the Traffic
Sent on Its Network

Confidentiality: Not addressed.

Integrity: By preventing unrecognized agents from
communicating on a network, the
Signature-based IDS protects the network from
misuse, and the agents attached to the network
from attack

Availability: The Signature-based IDS may prevent availability
on a network as overhead on authentication may
lead to under use.

Performance: The system may take a performance hit in
validating the message signatures as it may
require significant overhead.

Cost: Additional hardware to process signatures may
incur a cost.

Manageability: Allows a system to more easily manage the actors
that may utilize a network.

Usability: The usability may decrease as only a small subset

of actors may be known to a network.

IDS, Intrusion Detection Systems.

Subject Intaerface

requestUse() [— forwardUse( )
obtainProtocal()
tamperResponse(}

alteration to a standard Hardware Security Module [50]. Unchecked
alteration of the module can lead to security vulnerabilities for any
other vehicle sub-system that relies on the module for cryptogra-
phy services. As it pertains to SAE J3061, the use of tamper-resistant
design can promote the protection of sensitive data, and preven-
tion of unauthorized changes to a vehicle [11]. The pattern also
promotes the principles of failing securely [15].

Properties

The Tamper-Resistant Modules can be used to satisfy the Integrity
Property, the Nonrepudiation property, and the Authorization

property.
Applicability
The pattern is applicable to attack Prevention, attack Mitigation,

and attack Detection.

Structure

The Tamper-Resistant Modules structure of a system can be cap-
tured in terms of their relationships (Figure 9). The pattern is
understood as the Interface, between the Subject and the Tamper-
Resistant Object. The Interface has a Working State that abstractly
describes the untampered status of the Tamper-Resistant Object. If
the Tamper-Resistant Object is altered, the Interface will fail to inter-
act with the Tamper-Resistant Object in the way the Working State
predicts, causing the Interface to initiate a tamper response, whether
it be disabling itself or changing to an immutable tamper state.

Participants
The following section describes the participating classes in the pat-
tern structure.
* Subject
- An actor requesting to access a Tamper-Resistant Object.
» Interface

- Medium for communication between the Tamper-Resistant
Object and a Subject.

»  Working State

- Abstractly, the Interface’s working model of using the
Tamper-Resistant Object as it was designed.

Tamper Resistant Object
provideUsei)

1

1

Working State

provideProtocol()

1

Figure9 Class diagram for Tamper-Resistant Modules Pattern.
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Collaborations

A given Subject will attempt to communicate with a Tamper-
Resistant Object through an Interface. Consequently, there is an
association between both the Subject and the Interface and the
Tamper-Resistant Object and the Interface. The Interface has an asso-
ciation with the Working State. The Tamper-Resistant Object has an
associated Working State.

Behavior

Figure 10 depicts a scenario where a Subject interacts with the
Tamper-Resistant Object. The Subject will send the request, prompt-
ing the Interface to forward the request to the Tamper-Resistant
Object on behalf of the Subject. To do this, the Interface will con-
sult the Working State object for the proper protocol of interac-
tion. When the Interface fails to interact with the Tamper-Resistant
Object as tampering has rendered the Tamper-Resistant Object dif-
ferent from its Working State, the Interface will execute its tamper
response.

Constraints

In an automotive system, additional hardware, like that required to
enforce Tamper-Resistant Modules, can be expensive and take valu-
able space in the system.

Consequences

Consequences for applying this pattern are given in Table 7.

Known Uses

As described by Wolf and Gendrullis [50], a tamper-resistant design
achieved by a system-on-chip non-detachable connection with
ECU hardware promotes tamper resistance or at least evidence of
tampering.

Supported Principles

Tamper-Resistant Modules pattern promotes Principle 3 (Fail
Securely), Principle 4 (Least Privilege), ]3061 principle 4 (Prohibit
Untested Software Changes), and J3061 principle 5 (Prevent Vehi-
cle Owners from Making Unauthorized Changes).

Subject Interface

Related Security Patterns

Tamper-Resistant Modules is related to the Secure Logger described
by Fernandez [7].

6.2. Security Patterns for Outward-Facing
Communication

In contrast, the following patterns are intended to secure outward-
facing communication. Blacklist, DDoS Redundancy, Multi-Factor
Authentication, Symmetric Encryption, and Third-Party Validation.
6.2.1. Blacklist

Blacklistis a structural-based security pattern.

Intent

A Blacklist intends to monitor the traffic of potentially malicious
addresses in a network. Nodes in the network use the Blacklist to
block traffic originating from the malicious nodes.

Motivation

Communication with external entities is becoming increasingly
integrated into modern automotive systems. Today’s cars commu-
nicate with smart infrastructure, receive over the air updates from
manufacturers, and exchange information with other vehicles on

Table7 Consequences of Tamper-Resistant Modules pattern.

Accountability: Tamper-Resistant Modules Can Increase
Accountability of a Sub-system

Confidentiality: N/A

Integrity: The integrity of a system is improved through the
employment of tamper resistance.

Performance: If implemented in the design of a given module,

performance costs should not be a concern.
Cost: May require additional hardware.

Manageability: May be more difficult to update a module if
additional steps are required to circumvent the
tamper protection.

Usability: Usability should not be affected.

Waorking State Tamper Resistant

Object

: 1: requestUse() :
b_

[1.2: obtainProtocol()] |
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Figure 10 Sequence diagram for Tamper-Resistant Modules Pattern.
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the road. While these technologies allow for improved performance
and user experience, the increased reliance on networks leaves a
vehicle susceptible to attack from a malicious user on the net-
work. The inability to identify compromised nodes poses a secu-
rity risk to an automotive system. VANETSs allow vehicles and
smart infrastructure to share information about current driving
conditions within a specific broadcast range. Due to the routing
protocols upon which VANETS rely, a malicious node can join a
VANET and proceed to attack the network by intercepting the com-
munication between vehicles, dropping packets, and changing or
fabricating packets [64]. Applications such as the Post Crash Notifi-
cation [65] can be deployed on VANETS: to detect an attack such as
injections of false messages that can lead to potentially dangerous
responses by the vehicles on the network.

Properties

The Blacklist can be used to satisfy the Authentication property, the
Authorization property, and the Nonrepudiation property.

Applicability

A Blacklist is applicable to the Prevention and Mitigation of an
attack.

Structure

The Blacklist structure of a system can be captured in terms of
their relationships (Figure 11). An entity sending a message is cap-
tured by a Client object. The entity secured with a Blacklist is repre-
sented as a Service object. The interface between the two objects is a

Checkpoint object. And finally, the Blacklist captured with the
Blacklist object.

Participants

The following section describes the participating classes in the pat-
tern structure:

* Client: An actor requesting access to a node, or Service object.

* Service: The intended protected object. A Service has access to a
system’s message processing.

* Blacklist: The systems list object for tracking bad addresses.

* Checkpoint: The interface through which all communication
with a Service is achieved, and where the Blacklist is checked.

Collaborations

A given Client will attempt to communicate with a Service through a
Checkpoint. Consequently, there is an association between both the
Service and the Checkpoint and the Client and the Checkpoint that
acts as the interface. There is also an association between a Check-
point and the associated Blacklist.

Behavior

A Blacklist (Figure 12) is a solution that can partially fulfill the rel-
evant security requirements that are unmet in the problem state-
ment. A Blacklist maintains a list of addresses within a network
that have exhibited inappropriate behavior. When a packet from a

' "Client =} © ', "|_Checkpoint Service
id " checkAccess() Y | serviceld
credentials allowAccess() 1 executeServicel )
accessservicel ) N
*
Blacklist
inBlacklist(}

Figure 11 Class diagram for Blacklist Pattern.
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Figure 12 Sequence diagram for Blacklist Pattern.
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blacklisted address arrives at a node, the node simply drops the
packet. In the context of a VANET, nodes will not process or for-
ward any messages that originate from a blacklisted address, and
routing algorithms will not include the blacklisted nodes in calcu-
lating routes of the packets.

Constraints

Real-time constraints are important to consider in the context of
the Blacklist pattern as message processing incurs overhead as well
as consumes additional resources per message.

Consequences

See Table 8.

Known Uses

An example of a Blacklist being deployed in an automotive setting
is given by Daeinabi and Rahbar [60]. Here the authors propose a
system in which a select number of nodes in a VANET are tasked
with monitoring behavior of the other nodes, where the overall net-
work can dynamically change over time. If one of the monitoring
nodes detects abnormal traffic from a given node, then it increases
a distrust value for that node. Meanwhile, all nodes in the network
maintain a Blacklist. If a node is given a distrust value beyond a cer-
tain threshold by the monitoring nodes, then that node is reported
and blacklisted for the other nodes in the network.

Relevant Security Principles

The Blacklist leverages Practice Defense in Depth, Reluctance to
Trust, and Compartmentalize.

Related Patterns

The Blacklist is related to traffic filtering patterns such as the
Firewall pattern and the Signature-Based IDS.

Table 8 Consequences of Blacklist Pattern.

Accountability: Preventing Misbehaving Nodes from Participating
in a Network Improves the Ability of the Network
to Hold Malicious Actors Accountable

Preventing nodes that are known to misbehave
from accessing data sent between nodes in the
network provides a higher degree of data
confidentiality.

Preventing nodes that are known to misbehave
from receiving and possibly modifying data sent
between nodes in the network provides a higher
degree of data integrity.

Depending on the blacklisting protocol the
Blacklist may prevent harmless nodes from
participating in the network, thereby reducing
availability.

Performance may be affected by the overhead
incurred by using the network Blacklist pattern.
Performance improvements may occur however
as the resources consumed by misuse are reduced .

Not applicable.

By setting blacklist rules, manageability of a
network can be improved.

Depending on the blacklisting protocol, legitimate
users may be prevented from accessing the
services.

Confidentiality:

Integrity:

Availability:

Performance:

Cost:
Manageability:

Usability:

6.2.2. DDoS redundancy

DDoS Redundancy is a structural based security pattern.

Intent

The DDoS Redundancy pattern is intended to make a resource or
network more resilient to a DDoS by providing redundant resources
in case a resource becomes inundated with service requests.

Motivation

When a service is provided over a network, resources are typically
allotted based on estimated average use. A DoS attack seeks to attack
a service’s availability to entities that may need to use it by flood-
ing the service with requests. The service will have allocated all of
its resources to the attacking node(s) leaving it unavailable to legit-
imate users. In VANETs, a DDoS attack may manifest as several
nodes broadcasting on a frequency used by the VANET and con-
sequently jamming the communication medium [61]. The result is
the inability for legitimate applications and nodes to send messages
on the VANET which may lead to potentially adverse affects.

Properties

The DDoS Redundancy can be used to satisfy the Availability
property.

Applicability

The DDoS Redundancy is applicable to both prevention of an
attack, and mitigation of an attack.

Structure

The DDoS Redundancy structure of a system can be captured in
terms of their relationships (Figure 13). An entity sending a mes-
sage is captured by a Subject object. The Subjects pass their request
through a Check Point object which manages forwarding the request
to the appropriate Resource as well as informing the Resource Man-
ager about the request. The Resource Manager monitors loads of the
system’s redundant Resources and orchestrates with both the Check
Point and Resources to balance the loads.

Participants
The following section describes the participating classes in the pat-
tern structure.
* Subject
- An actor requesting to access a Resource.
» Check Point

- The interface through which all communication with a
Resource is achieved, and where the Resource Manager is
updated.

* Resource
- The object requested by the Subject.
* Resource Manager

- Tracks Resource usage and manages loads through
orchestration with the Check Point and Resource objects.
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Collaborations

A given Subject will attempt to communicate with a Resource
through a Check Point. Consequently, there is an association
between both the Subject and the Check Point and the Resource and
the Check Point. The Check Point has a one to many relationship
with Resources implying redundant resources. There is also an asso-
ciation between a Check Point and the Resource Manager which
orchestrates forwarding by the Check Point. The Resource Manager
also manages the many Resources by tracking loads and sending
drop and accept messages based on Resource loads.

Behavior

The solution provided by the DDoS Redundancy pattern is related
to a DDoS defense described by Mirkovic et al. [66] as Resource
Multiplication. Many web based service providers deploy this
method of redundant web-servers and advanced load-balancers
to prevent their web-application from succumbing to a DDoS
attack. In the given example of a VANET broadcast frequency
being jammed by a DDoS attack, providing several frequencies

allows redundant communication mediums for a VANET and
consequently allows for a more available service. In Figure 14, a
Subject requests a Resource at the Check Point. The Check Point for-
wards the request to the current Resource as well as an update to the
Resource Manager. The Resource will not process the packet until it
is signaled to do so by the Resource Manager. The Resource Manager
flags the Resource as overloaded, and sends a drop request signal to
the Resource and the resource overload signal to the Check Point.
The Check Point then switches its forwarding protocol to a different
Resource. The Subject will send a request again and this time it will
be forwarded to the available Resource.

Constraints

Automotive systems are constrained by resource limitations. In
the context of DDoS Redundancy, this may mean that switching
to another resource may not be possible. In a real-time environ-
ment, overhead required to monitor resources may impede the sys-
tem response speed while also using more resources per request
process.

~ Subject

" Check Point

switchResource()
1 forwardRequest()

1 2.%

Resource
processRequest()

1

Resource Manager

updateLoadinfo()
dropRequest(}
acceptRequest(}
resourceOverload() 1

Figure 13 Class diagram for Distributed Denial of Service (DDoS) Redundancy Pattern.
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Figure 14 Sequence diagram for Distributed Denial of Service (DDoS) Redundancy Pattern.
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Consequences

Table 9 describes how the DDoS Redundancy pattern affects the
following system characteristics.

Known Uses

While DDoS Redundancy is employed widely by web applications
today, proposed solutions for DDoS prevention in VANETs are
described by Gillani et al. [37]. Researchers proposed switching
between communication channels or technologies [67] when one
is brought down, while other researchers [61] propose using multi-
ple receivers operating in disjoint frequencies to provide a feasible
solution.

Relevant Security Principles

Relevant security principles related to the DDoS Redundancy
pattern include Practicing Defense in Depth and Compart-
mentalization [15]. The automotive security standard SAE
J3061 [11] promotes defense in depth as a guiding security
principle.

Relevant Security Principles

The DDoS Redundancy leverages Practice Defense in Depth, Fail
Securely, and Compartmentalize.

Related Pattern

The DDoS Redundancy makes use of the Checkpoint pat-
tern and the Secure Thread/Process patterns described by
Fernandez [7].

6.2.3. Multi-factor authentication

Multi-factor Authentication is a structural based security pattern.

Intent

The Multi-factor Authentication pattern is used to provide a redun-
dant security measure in authenticating an actor or a message. By
enforcing an additional level of authentication, malicious actors
can be prevented from attacking if a node or single credential is
compromised.

Table9 Consequences of DDoS Redundancy Pattern.

Accountability: Not Affected

Confidentiality: Not Affected.

Integrity: Not Affected.

Availability: Improves availability by providing redundant
resources when a service is inundated with requests.

Performance: Not affected.

Cost: The cost of additional resources, such as additional
receivers in the previous example, would increase
the cost of a system.

Manageability: Not affected.

Usability: The use of redundant resources may increase the

usability of a given service by providing greater
capacity.

DDos, Distributed Denial of Service.

Motivation

While it is common practice to authenticate messages and actors
within a system using passwords or signatures, some highly critical
systems that house personal data or handle safety-critical applica-
tions may be susceptible to attack if the passwords or signatures are
compromised. If an actor’s credentials are compromised, then it is
possible to inject false information into a system, steal private data
and modify data. In a VANET, if a given node or a vehicle within a
smart infrastructure is compromised or an address/signature of the
node is replicated (spoofed), the other vehicles in the VANET may
be susceptible to a variety of attacks. As an example, in a Sybil attack
where a single node sends a message from many fabricated or com-
prised addresses, applications such as those detecting traffic jams
may incorrectly divert other vehicles away from a section of road
even though the messages originate from one node [61]. The inabil-
ity to authenticate these addresses as real vehicles or smart infras-
tructure could lead to critical safety applications from functioning
correctly.

Properties

The Multi-factor Authentication can be used to satisfy the Authen-
tication property, and the Confidentiality property.

Applicability

Multi-factor Authentication is applicable to the prevention of an
attack.

Structure

The Multi-factor Authentication structure of a system can be cap-
tured in terms of their relationships (Figure 15). An entity request-
ing access is captured by a Subject object. The entity secured with
a Multi-factor Authentication is represented as a Protected Object.
The interface between the two objects is a Checkpoint object. The
Checkpoint makes use of multiple Authenticators to obtain Creden-
tials from a subject.

Participants
The following section describes the participating classes in the pat-
tern structure.
* Subject
- An actor requesting to access to a Protected Object.
* Protected Object

- The intended protected object. The entity protected
through an authentication Checkpoint.

* Credential
- Some identifying secret required to access a Protected Object.
*  Checkpoint

- The interface through which all communication with a
Service is achieved, and where the Blacklist is checked.

» Authenticator

— Object tasked with retrieving a credential from a Protected
Object.
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Collaborations

A given Subject will attempt to communicate with a Protected
Object through a Checkpoint. Consequently, there is an association
between both the Protected Object and the Checkpoint and the Sub-
ject and the Checkpoint which acts as the interface. There is also an
association between a Checkpoint and the multiple Authenticators
associated with it. A given Authenticator is associated with a Subject
which in turn is associated with several Credentials.

Behavior

By enforcing the Multi-factor Authentication pattern, a poten-
tial attacker is less likely to compromise an actor within a sys-
tem as obtaining a single credential will not guarantee access to

'Credential

the actor (see Figure 16). Moreover, other nodes that may com-
municate with a compromised node are less likely to incorrectly
validate spoofed messages given an extra level of authentication.
Multi-factor Authentication is used in many web applications
where a user is required to enter a password to log in as well as
another authentication measure such as a security question the
user would know, or a code sent to the user in a separate appli-
cation such as SMS. In the example given previously, the use of
another authenticating measure besides the address of a node would
place a greater burden on the attacker using fabricated addresses.
The Multi-factor Authentication strengthens an actor’s resilience to
compromise by strengthening authentication capabilities, and con-
sequently the system’s ability to promote integrity and privacy.

Subject

Check Point Protection Object

getCredential(} 1
accessservice() 1

requestAuthenticationi )
accessGranted() 1
checkCredential(}

1 |accessService()()

1

2.*%

Authenticator

requestCredential( )
forwardCredentiali}

Figure 15 Class diagram for Multi-Factor Authentication Pattern.
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Constraints

Automotive systems are limited in the amount of resources that
can be provided. By requiring more overhead to authenticate Sub-
jects, resources critical to safety may be affected. Furthermore, in
VANET applications where an increased amount of nodes par-
ticipating improves data collection and ability to route messages,
adding additional authentication may prove challenging for some
harmless nodes resulting in decreased participation.

Consequences

Table 10 describes how the Multi-factor Authentication pattern
affects the following system characteristics.

Known Uses

In the given example of the Sybil attack on a VANET, where a single
compromised node can fabricate many messages that appear to be
from many nodes[61], a proposed solution to detecting the fabrica-
tion through the use of multiple points of message authentication
has been developed [62]. Here, researchers propose the use of a GPS
as a second form of authenticating a message from a given address.
If a single node sends many messages with different addresses, then
other nodes will be able to see the messages all originating from one
node, implying a Sybil attack.

Relevant Security Principles

The Multi-factor Authentication pattern promotes the principles
of Practicing Defense in Depth, Compartmentalization, and Being
Reluctant to Trust.

Related Patterns

The Multi-factor Authentication pattern is related to the Authenti-
cator and can make use of the Credential [7].

6.2.4. Symmetric encryption

Symmetric Encryption is a structural-based security pattern.

Intent

Symmetric Encryption is used to encrypt messages so that only a
sender and receiver can read the contents.

Table 10 Consequences of Multi-Factor Authentication Pattern.

Accountability: Accountability Is Improved as a System Is Able to
More Accurately Authenticate Actors

Confidentiality: Private data that may be accessible from
compromising an actor is more secured.

Integrity: The ability to infiltrate and alter data or inject data is
made more difficult through more rigorous
authentication.

Availability: Not applicable.

Performance: Overhead may be incurred by requiring additional
authentication steps.

Cost: The use of other services for additional
authentication may incur a cost.

Manageability: Not applicable.

Usability: A system may become more difficult to use as

multiple steps are required to authenticate
legitimate use.

Motivation

Applications that communicate with external entities may send
information that needs to be protected from unintended recipients
[7]. In an automotive system that communicates with external enti-
ties, such as in a VANET where a vehicle can be communicating
with other vehicles and infrastructure, the inability to accept and
process only authentic messages may leave a system susceptible to
spoofing and dDoS attacks [3]. In the case of the LESPP system,
researchers seek to mitigate the authentication and privacy preser-
vation challenges facing VANETs [49]. As it pertains to SAE J3061
[11], the use of Symmetric Encryption aligns with the principles of
protecting personal identifiable information and sensitive data.
The implementation of the pattern also aligns with the Viega and
McGraw principles of promoting privacy and being reluctant to
trust [15].

Properties

The Symmetric Encryption can be used to satisfy the Confidential-
ity property.

Applicability

The pattern is applicable to attack Prevention.

Structure

Both the Sender and Receiver have a Key that allows them to deci-
pher a sent Message (Figure 17). A Sender will give its Key and
the Message to an Encryptor object which will use an Algorithm to
encrypt the Message. The receiver will give its key and the Encrypted
Message to the Decryptor to obtain the original Message.

Participants
* Principal

- Main actor that may send and receive messages. Can be
defined by either of the inheriting classes Sender and
Receiver.

* Key

- Cryptographic key used by the Principal to encrypt and
decrypt a message

* Message

- The information to be sent and received. Has inheriting
class Encrypted Message which is the resulting message after
a Message undergoes encryption.

* Encryptor

— Uses a Message and the Sender’s Key to create an Encrypted
Message. Leverages the Algorithm Object.

* Decryptor

- Uses an Encrypted Message and the Receiver’s Key to decrypt
an Encrypted Message. Leverages the Algorithm
Object.

» Algorithm

- Given a Message and a Key, either decrypts an Encrypted
Message or encrypts a Message.
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Collaborations

A Principal has a Key, Messages, and Encrypted Messages. The spe-
cialized Principal Sender has Encryptors and the specialized Prin-
cipal Receiver has Decryptors. A given Message can have up to
one associated Encrypted Messages. A Message has one associated
Decryptor and one associated Encryptor, thus maintaining consis-
tency in the type of encryption and decryption techniques used.
Similarly the Encryptors and Decryptors are associated with a single
Algorithm.

Behavior

In the case of sending a Message, a Sender will send a message
and Key to a Encryptor (Figure 18). The Encryptor will send the

Principal

B

information along to the Algorithm to encrypt. The Encryptor can
then create the Encrypted Message object and return it to the Sender.

Constraints

In an automotive system where constraints exist on real-time
processing and resources, performing the algorithms used in
cryptography can be costly in terms of overall system perfor-
mance. Moreover, overhead is incurred when processing messages
to ensure authenticity or to decrypt. In the case of LESPP, computa-
tion overhead is reduced by 41.33-77.6% compared to existing pub-
lic key infrastructures and in simulations, the authors show nearly
0 ms network delay [49].
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Figure 17 Class diagram for Symmetric Encryption Pattern.
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Consequences

Table 11 describes the consequences of using the Symmetric
Encryption pattern.

Known Uses

As described above, the use of symmetric cryptography has been
used in the LESPP system described by Wang et al. [49]. By verify-
ing a signature on messages sent over a VANET, LESPP can avoid
DDOS and spoofing attacks from unauthenticated nodes.

Supported Principles

Symmetric Encryption supports Principle 7 (Promoting Privacy)
as well as Principle 9 (Be Reluctant to Trust).

Related Security Patterns

The pattern is related to Asymmetric Encryption and Digital Sig-
natures [7].

6.2.5. Third-party validation

Third-Party Validation is a structural based security pattern.

Intent

The Third-Party Validation pattern is intended to provide valida-
tion of messages broadcasted in a given network. If a spoofed mes-
sage is sent to a node and the receiving node cannot validate the
message with a trusted node somewhere else in the network, then
the receiving node can disregard the message.

Motivation

In many networks that rely on messages being propagated to other
nodes, there is concern that a compromised node may alter the mes-
sage or inject a false message. This type of attack is known asa Mas-
querading Attack that can lead to fabrication, alteration, and replay
attacks [37]. In a VANET, many applications, such as an application
that reports traffic jams to other vehicles within the VANET, rely on
nodes reporting on current conditions as they perceive them and
propagating the messages of the nodes around the VANET to create
a consensus for the road conditions. If compromised nodes in the
VANET send falsified information to another node in the network,

Table 11  Consequences of Symmetric Encryption Pattern.

Accountability: Overall Accountability of a System Improves as
VANET Communication Can Be Authenticated

Confidentiality: In the case of LESPP, because the key management
center is the only entity that can expose a vehicle’s
identity, confidential information is better
protected.

Integrity: System information and resources can be better
protected from malicious actors.

Performance: May require additional hardware.

Cost: Additional hardware to process signatures may
incur a cost.

Manageability: May require additional management overhead for
managing certificates of infrastructure and other
vehicles.

Usability: Usability of system resources may be affected by

overhead of verifying signatures.

VANETs, Vehicle Ad-hoc Networks.

the automotive system could behave in an inappropriate manner
and jeopardize safety [37].

Properties

The Third-Party Validation can be used to satisfy the Integrity prop-
erty, and the Authentication property.

Applicability

Third-Party Validation is applicable to Detection and Mitigation.

Structure

The Third-Party Validation structure of a system can be captured
in terms of their relationships (Figure 19). An entity broadcasting a
Message is captured by a Sender object. Both the TrustedNode and
Receiver actively listen and receive messages on a broadcast net-
work.

Participants

The following section describes the participating classes in the pat-
tern structure.

» Sender

- Broadcasts a given Message.
* Receiver

- Listens on a network for a broadcasted Message.
* TrustedNode

- Listens on a network for a broadcasted Message. Responds
to verification requests from Receivers

* Message

— Unit of communication over the network.

Collaborations

A given Sender broadcasts a Message on a network, creating an
association with the Message. Meanwhile, the other nodes on the
network (Receivers and TrustedNodes) listen for Messages, creating
associations with the Messages. Every given Receiver node has a one
or more TrustedNodes used for verification.

Behavior

The Third-Party Validation pattern seeks to solve the concerns per-
taining to integrity by obtaining information from more than one
source. Importantly, if there are more trusted nodes within a net-
work that are more secure, they can be leveraged for performing
the validation and thus providing a more robust validation scheme.
In the case of an application on a VANET, information received
by a node can be compared to information received by some other
node(s) in the network. If the information is not within some
degree of similarity, then the information can be disregarded (see
Figure 20).

Constraints

Many automotive systems must function in real-time environments
to ensure safety. In the context of Third-Party Validation, adding
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Figure 19 Class diagram for Third-Party Validation Pattern.
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Figure 20 Sequence diagram for Third-Party Validation Pattern.

additional overhead in the verification steps of message processing
could add an unacceptable degree of delay.

Consequences

Table 12 describes how theThird-Party Validation pattern affects
the following system characteristics.

Known Uses

In a proposed solution by Gillani et al. [37], when a node receives a
message in a VANET, the node notifies a Road Side Unit (RSU) and
requests to check the message correctness. The RSU will contact the
RSU closest to the sending node to validate that the message was
actually sent, and not spoofed or modified in transit.

Relevant Security Principles

Principles related to the Third-Party Validation pattern include
Promoting Privacy, and Being Reluctant to Trust.

Related Patterns

This pattern is related to the Enrolling Using Third-Party Validation
pattern described by [19].

[ [2.2: regVerification() ]

[2.3: verifyMessagel(]]

Table 12  Consequences of Third-Party Validation Pattern.

Accountability: Not Applicable

Confidentiality: Not Applicable.

Integrity: Integrity of the system is improved as modified
messages are flagged in the validation steps.

Availability: Not applicable.

Performance: Overhead from validation may incur performance
loss.

Cost: Not applicable.

Manageability: Not Applicable.

Usability: Resources may become more scarce as they are

being used for validation.

7. CONCLUSION

As software and external communication become further inte-
grated into modern automotive systems, it is critical that security
is incorporated explicitly into the design and development process.
By preventing, detecting, and mitigating attacks, automotive sys-
tems can continue to provide a better customer experience while
also ensuring safety. With the use of automotive-focused security
patterns, automotive software developers can incorporate known
solutions to security problems into their systems more easily.
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In this paper, we discussed security pattern concepts in the con-
text of automotive systems and described the initial set of pat-
terns in our repository. As part of this work, we introduced a
template for describing automotive-focused security patterns that
extends previously-developed security pattern templates [7,25].
Moving forward, we are working with our industrial collabora-
tors to expand the security pattern repository, including making
use of taxonomies of automotive security attacks [54]. We are also
exploring how the security patterns can be incorporated into secu-
rity and safety-focused development processes, similar to that pro-
posed by Amorim et al. [47]. We are also exploring socio-technical
approaches to securing automotive cybersecurity vulnerabilities
[68]. Finally, with the upcoming release of the ISO/SAE 21434
Automotive Cybersecurity standard due for release in 2020 [70,71].
We will update the security patterns to incorporate the appropriate
terminology modifications, process development guidelines, risk
assessment strategies, and the interactions with safety standards
defined in 1SO26262 [71].

NOTE ADDED

A shortened and preliminary version of this work was previously
published in the MODELS Workshop for Modeling for Automo-
tive Systems (MASE2019). Descriptions for only two of the pat-
terns were included in the workshop paper. This paper includes
the descriptions for all of the patterns in the repository. Additional
background, related work, and future work directions have also
been added to this extended paper.
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