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Chapter 15. Trigonometry on
the Diamond

The approximation of any function to any desired precision with a sum
or series of sines and cosines via Fourier series expansions is a wonderful
mathematical tool which is widely used in technology and science,
either on time series or closed shapes such as plant leaves. We already
know that on each supercircle and superellipse we can define a specific
Pythagorean theorem with associated trigonometrical functions.

Now what if our time-series is a collection of discrete measurements
connected via lines? Such piecewise linear graphs occur, for example, in
seismic measurements or sampling of sounds. In the conversion of analog
sound to digital, samples are taken at specified intervals and from this
the digital signal is constructed. What if we can consider such series as
connected points of a piecewise-linear graph rather than approximate
them with sinusoidal functions?

It turns out that this can be done using inverse trigonometric functions
[78]. The diamond, a subellipse with exponent 𝑛 = 1, can be described
by 𝑥 = arcsin(cos 𝑡) and 𝑦 = arcsin(sin 𝑡) (Figure 69 left), and

Figure 69. Left: the diamond. Right: arcsin(sin(3𝑡)) (green) and
arcsin(cos(5𝑡)) (red).
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the corresponding trigonometric functions are defined immediately
(Figure 69 right). The graphs in Figure 70 show the Lissajous figures
with 𝑥 = arcsin(cos(𝐴𝑡)) and 𝑦 = arcsin(sin(𝐵𝑡)) for particular values
of 𝐴 and 𝐵. For any 𝐴 = 𝐵 we recover the diamond. One can construct
polynomials as sums (Figures 71 and 72).

15.1 D-Fourier Polynomial Expansions
As it seems that only a small number of 𝐷-trigonometric functions
are sufficient to approximate graphs of complicated shapes, in what
follows we consider only 𝐷-Fourier polynomial expansions, avoiding the
complicated problems of series’ convergence.

Given a function 𝑓(𝑡) ∈ 𝐿2(𝜋, 𝜋), put:

𝑓(𝑡) = 𝑎0
2 +

𝑁
∑
𝑘=1

𝑎𝑘 arcsin(cos 𝑘𝑡) + 𝑏𝑘 arcsin(sin 𝑘𝑡) (15.1)

where 𝑁 is the highest frequency of the signal 𝑓(𝑡). Then the coefficients
are computed by using Fourier’s method [58]. For 𝑘 = 0 it follows that:

𝑎0 = 1
𝜋 ∫

𝜋

−𝜋
𝑓(𝑡) 𝑑𝑡 (15.2)

and for 𝑘 ≥ 1 the coefficients are derived by taking the scalar products:

(𝑓(𝑡), arcsin(cos 𝑘𝑡)) = 𝑎𝑘 ∫
𝜋

−𝜋
arcsin2(cos 𝑘𝑡) 𝑑𝑡 (15.3)

(𝑓(𝑡), arcsin(sin 𝑘𝑡)) = 𝑏𝑘 ∫
𝜋

−𝜋
arcsin2(sin 𝑘𝑡) 𝑑𝑡 (15.4)

so that:

𝑎𝑘 = (𝑓(𝑡), arcsin(cos 𝑘𝑡))
|| arcsin(cos𝑛𝑡)||2 (15.5)
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Figure 70. Lissajous figures with 𝑥 = arcsin(cos(𝐴𝑡)) and 𝑦 =
arcsin(sin(𝐵𝑡)). Left: 𝐴 = 3, 𝐵 = 4. Center: 𝐴 = 7, 𝐵 = 4. Right:
𝐴 = 5, 𝐵 = 1.

Figure 71. Left: arcsin(sin(11𝑡)) + arcsin(cos(13𝑡)). Right:
arcsin(sin(12𝑡)) + arcsin(cos(13𝑡)).

Figure 72. Left: arcsin(sin(2𝑡)) + arcsin(cos(2𝑡)). Right:
arcsin(sin(2𝑡)) + arcsin(cos(3𝑡)).
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𝑏𝑘 = (𝑓(𝑡), arcsin(sin 𝑘𝑡))
|| arcsin(sin𝑛𝑡)||2 (15.6)

The integrals in the denominators of Equations (15.5) and (15.6) are
given by:

∫
𝜋

−𝜋
arcsin2(sin 𝑘𝑡)𝑑𝑡 = ∫

𝜋

−𝜋
arcsin2(cos 𝑘𝑡)𝑑𝑡

= 2 ∫
1

−1

(arcsin𝑥)2
√

1 − 𝑥2 𝑑𝑥 ≃ 5.16771...
(15.7)

Then, introducing the constant 𝐷 ∶= 5.16771... we find:

𝑎𝑘 = 1
𝐷 ∫

𝜋

−𝜋
𝑓(𝑡) arcsin(cos 𝑘𝑡) 𝑑𝑡 (15.8)

𝑏𝑘 = 1
𝐷 ∫

𝜋

−𝜋
𝑓(𝑡) arcsin(sin 𝑘𝑡) 𝑑𝑡 (15.9)

Therefore, Equation (15.1) writes as:

𝑓(𝑡) = 1
𝜋 ∫

𝜋

−𝜋
𝑓(𝑡) 𝑑𝑡 +

𝑁
∑
𝑘=1

[ 1
𝐷 (∫

𝜋

−𝜋
𝑓(𝑡) arcsin(cos 𝑘𝑡) 𝑑𝑡

+ ∫
𝜋

−𝜋
𝑓(𝑡) arcsin(sin 𝑘𝑡) 𝑑𝑡)]

(15.10)

where 1/𝐷 ≃ 0.1935... is a constant which corresponds to 1/𝜋 ≃ 0.3183
appearing in the Fourier trigonometric coefficients.

In Figure 73, the graphs of the functions arcsin(sin(2𝑥))2 (left) and
arcsin(sin(4𝑥))2 (right) are shown.

Hence, the analogues of circular functions are defined and formulas
are constructed that translate the trigonometric ones. The relative 𝐷-
trigonometric functions have geometric shapes closely related to the
corresponding classical ones. For these functions, the orthogonality
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Figure 73. Left: arcsin(sin(2𝑥))2. Right: arcsin(sin(4𝑥))2.

property has been proven and finite combinations of 𝐷-trigonometric
functions allow to write the piece-wise linear functions in a simpler way
with respect to their Fourier expansions. Possible applications can be
found in the representation of sounds or seismic waves generated by
earthquakes.

15.2 Nature: An Endless Source of Inspiration
The application of mathematics to physical and natural phenomena in
almost all cases makes use of pre-existing mathematical structures, such
as Riemannian geometry and tensor calculus for general relativity, and
matrices and Hilbert spaces for quantum mechanics. According to René
Thom (Fields Medal 1958): “There is only one authentic counterexample
to the thesis supporting the preformed, almost a priori character of the
mathematical structures applied progressively to theoretical physics or to
other branches of knowledge of reality: Fourier’s wave theory. It is very
clear that the Fourier series theory was really inspired by physics, more
precisely by the study of vibrating strings or the theory of heat.” [98]

Gielis curves were inspired by botany and various symmetries in nature,
expanding Gabriel Lamé’s proposed use of superellipses to model
crystals to a very wide range of natural shapes and phenomena. This is
a second example of a mathematical development inspired by natural
shapes and phenomena. Indeed, the profound study of nature is the
most fertile source of mathematical discoveries, as Fourier wrote.
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In this book, these two methods have been combined by showing how
the original Fourier projection method can be used to solve boundary
value problems on normal polar domains, in particular Gielis domains.
Moreover, since each specific instance or curve comes with its proper
trigonometric functions and Pythagorean theorem, this opens up new
possibilities and connections in mathematics. In specific cases like the
diamond, this leads to generalizations of Fourier’s work to deal with
piecewise linear functions.
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