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Chapter 14. Understanding Life

14.1 Commensurability and Computability
In the past decade, over 40,000 biological specimens have been tested.
In starfish, plant leaves, seeds and tree rings there are excellent
agreements between model and real measured data, but in both cases
two parameters for superellipses suffice. Circles and ellipses, the ideal
shapes from Euclidean geometry, are rarely observed, also not in tree
rings. They are not deviations of the circle, or near-circles, but their
shape is superelliptic. Richard Feynman wrote: “We have in our minds
a tendency to accept symmetry as some kind of perfection. In fact, it
is the old idea of the Greeks that circles were perfect, and it was rather
horrible to believe that the planetary orbits were not circles, but only
nearly circles. The difference between being a circle and being a nearly-
circle is not a small difference. It is a fundamental change so far as
the mind is concerned. There is a sign of perfection and symmetry in
a circle that is not there the moment the circle is slightly off. That is
the end of it, it is no longer symmetrical. Then the question is why it
is only nearly a circle – that is a more difficult question.” [34]

What we find in biology are not small deviations from the ideal
circle, nor are they nearly circles, in which symmetry vanishes. On the
contrary: they are genuine supercircles and superellipses (or subcircles
and subellipses) with their own internal (and perfect) symmetry. The
absence of circles and ellipses in biology challenges the validity of
physics methods based on the classical Pythagorean theorem and on
conic sections in applications in biology.

A fundamental question in the natural sciences has always been
about measurements and metric geometry: “how to measure, with what
yardstick?” A search for a common measure or yardstick has always been
essential and symmetry has the very same origin. Symmetry (-metria)
for the Ancient Greek mathematicians meant proportion or right
balance and the verb “to symmetrize” is the deliberate act of making
objects commensurable, forming the real basis of mathematics and
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geometry. Gielis transformations, which are essentially a generalization
of the Pythagorean theorem and of conic sections, allow for a uniform
description of a wide range of abstract and natural shapes. This opens
the door for a geometrical theory of morphogenesis, which is similar to a
geometrization of nature (not only of physics). In a geometric way, Gielis
curves make natural shapes, objects and phenomena commensurable
(i.e. symmetric). In Chapter 13 a range of shapes is shown that
are created with Equations (9.23) and (9.24) or the 3𝐷 versions
thereof.

Beyond the descriptive and the computational, natural shapes and
phenomena are subject to external and internal forces. The best
examples are soap films and soap bubbles, which are examples of
stress minimization on their surfaces. Such stresses are also referred to
as natural curvature conditions. Natural curvature conditions are the
reason why soap films and soap bubbles are optimal solutions to given
problems: that of arranging a soap film, minimizing stress on its surface
while balancing the pressure inside and outside of the soap bubble.

14.2 Constant Anisotropic Mean
Curvature Surfaces

The nearly universal principle in the natural sciences is that the
equilibrium configuration of a system can be found by minimizing
its total energy among all admissible configurations. When we are
considering the surface interface between two or more immiscible
materials, the surface geometry is determined by minimizing the surface
tension subject to whatever additional constraints are imposed by
the environment. These constraints may take the form of boundary
conditions or may include constraints that the volume or even the
surface area be preserved under deformations. In addition, there may
be additional energy contributions depending on the boundary. There
may also be energy contributions arising from external forces such as
gravity. For materials, which are in an ordered phase, the interfacial
energy may be anisotropic, i.e. its density may depend on the direction
of the surface. This is particularly true of the surface of a crystal, a
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fact that is empirically obvious from the way that the surface geometry
tends to favor certain directions.

There is a canonical equilibrium surface, called the Wulff shape, that can
be characterized as the absolute minimizer of the free energy 𝐹 among
all surfaces enclosing the same three-dimensional volume as the Wulff
shape [63, 64]. Other natural curvature conditions are for example the
Willmore conditions with the Willmore functional ∫ 𝐻2𝑑𝐴, the integral
of the squared mean curvature over the total surface, which has been
used to study membranes.

This is the governing principle of why soap films, snowflakes, cells
and membranes, flowers and space-times have the shape they have. As
surfaces residing in a 3𝐷 world, all flowers and plants conform to the
geometrical and mathematical principles of surface theory. This includes
inequalities between means of principal curvatures on a surface 𝑘1, 𝑘2 to
describe stress in a point. These principal curvatures are the maximal
and minimal curvatures and they are perpendicular! In geometry one
compares the arithmetic mean 𝐴𝑀 and the geometric mean 𝐺𝑀
of the two principal curvatures. Furthermore, in the same way as
describing shapes as Lamé curves, relations between classical principal
curvatures can also be superelliptic with the Casorati curvature for
𝑛 = 2 (Figure 58).

For soap bubbles and films, the Gaussian curvature 𝐾 = 𝑘1 ⋅ 𝑘2 (a
quantitative measure of stress on the surface; the square of the 𝐺𝑀)
and mean curvature 𝐻 = 𝑘1+𝑘2

2 (a quantitative measure of stress on
the shape induced by the environment; the 𝐴𝑀) are combined in
the inequality 𝐾 ≤ 𝐻2. This is the very classical (strict) inequality
for positive numbers 𝐺𝑀 < 𝐴𝑀 , but each term squared since in
curvatures of surfaces the values of 𝑘1 and/or 𝑘2 can be negative.
Natural shapes have the tendency to realize equality in the inequality.
The mathematical representations of soap films and soap bubbles are
Delaunay’s Constant Mean Curvature (𝐶𝑀𝐶) surfaces with 𝐻 = 0 or
𝐻 ≠ 0. When 𝐾 = 𝐻 = 0, equality is achieved in the inequality and
this is found in catenoids and planes, with natural examples found in
soap films and the soap catenoid resulting from two rings pulled out of
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Figure 58. Possible configurations between principal curvatures in a
point 𝑃 on a surface [41].

a soap solution. It is a surface of revolution, generated by revolving a
catenary. For soap bubbles 𝐻 ≠ 0, but the stress is evenly distributed
in a dynamical way. This can be observed by the changing colors and
color patterns due to adaptations in thickness.

These classical 𝐶𝑀𝐶 surfaces have been extended to the anisotropic
case, to Constant Anisotropic Mean Curvature surfaces with 𝐺𝑇 ,
whereby the surface energy is distributed along a prism (rather than
spherical as for 𝐶𝑀𝐶) [63]. The result is a ‘supershaped’ catenoid
(Figure 59) which is found in natural snowflakes. Cushion starfish of the
genus Culcita (Figure 60) are an example of the experiments that nature
has run, developing shapes intermediate between the archetypical shape
of starfish (e.g. Anthenoides and Stellaster in Figure 45) and soap
bubbles. In fluid mechanics other examples of supershapes are known
(Figure 61; [42]).

In one stroke our knowledge is extended from minimal surfaces in soap
films to real surfaces and bodies in the natural sciences, and this is
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Figure 59. Left: prism and supercatenoid. Center: prismatic snowflakes.
Right: capped column snowflakes.

Figure 60. Cushion starfish [41].

Figure 61. Supershape patterns in viscous fluids [42].

valid from the hyperlarge to the ultra-small. The curved surfaces we
observe everywhere can be studied as solutions to (multi-objective)
optimization problems. Growth and development are about getting rid
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Figure 62. Left: Maretia planulata (sand dollar). Center: flower-like
openings in the shell of a sand dollar. Right: pentagonal supershape
in black with its curvature in blue (𝑚 = 5; 𝑛1 = 5; 𝑛2,3 = 3.2;
𝐴 = 𝐵 = 1.7).

of stress induced by the environment, both external (e.g. light, heat,
humidity, nutrients) and internal (e.g. turgor pressure). This is what
the Laplace equation is about.

Instead of avoiding curvatures and tending towards equilibrium shapes,
in nature a “stabilization” of curvature in solid shapes seems to be
quite a general rule, integrating curvature in the most direct way.
Sand dollars are one example. In Figure 62 on the right, a pentagonal
supershape is shown with its curvature in blue. In the center, the
flower-like openings in the shell of a sand dollar can be seen. These
provide opportunities for food collection since the tube feet extrude
from these flower-like openings. The curvature comes naturally with
the slightest deviation from a circle into a supershape. In a sand dollar,
curvatures are functionalized by the test of the sand dollar and through
the openings the tube feet can function.

14.3 Natural Shapes from a Geometrical
Vantage Point

Natural shapes can be considered as two opposite reactions to tension
induced by the environment. When the tension in the shape aligns
with the growth vector, the resulting shape is the circle. When the
shape growth completely opposes the tension, the resulting shape is the
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Figure 63. 𝐺𝑇 on a circle and logarithmic spiral.

logarithmic spiral [56]. These are the two basic shapes in nature, from a
purely geometrical viewpoint. By applying Gielis transformations (𝐺𝑇 )
to these two basic shapes, a very wide range of natural shapes can be
studied in a simple way: take one of the two basic shapes and extract
the anisotropy (or curvature) via 𝐺𝑇 (Figure 63). That is, the function:

𝜌(𝜗) = 1
𝑛1√| 1

𝐴 cos(𝑚
4 𝜗)|𝑛2 + | 1

𝐵 sin(𝑚
4 𝜗)|𝑛3

⋅ 𝑓(𝜗)

with 𝑓(𝜗) either a constant function (the circle) or the exponential
function 𝑒𝑥.

In Figure 64, examples of the transformation of logarithmic spirals
(the polar representation of the exponential function) are shown. The
quintessential example of logarithmic spirals in nature are Nautilus
shells (Figure 64 bottom right). Here the value of 𝐺𝑇 is equal to one.
Such “continuous” growth (i.e. the spiral without transformations) is
also observed in snails (Figure 64 right bottom row). Most mollusk
shells however display an anisotropic growth.

Figure 64. Left: Soliclymenia paradoxa fossil. Bottom right: Nautilus
pompilius L.
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14.4 Curvature Can Be Based on the
Shape Itself

The first to understand in detail that rulers could be stretchable and at
the same time have a precise quantitative meaning, were Einstein and
Poincaré: they understood that measured data could be interpreted in
a new framework of Special Relativity Theory (𝑆𝑅𝑇 ) in which time
or mass lose their absolute meaning. All becomes relative, depending
on who measures and interprets. It is no miracle then that Gielis
transformations are a more general form and the Lorentz-Fitzgerald
transformations of 𝑆𝑅𝑇 are a special case. The intrinsic or extrinsic
view depends on the observer: living in the space or looking from
the outside (Chapter 11; [41]). Another example is General Relativity
Theory (𝐺𝑅𝑇 ), namely space-time metrics of the Big Bang type
which are formal deformations of Pythagoras’ theorem, similar to the
deformations of Euclidean circles or spheres with Gielis transformations,
whereby the space-slices of the full space-time at any given time 𝑡 are
Riemannian 3𝐷-spaces of constant curvature 𝑐(𝑡) [47]:

𝑑𝑠2 = −𝑑𝑡2 + {𝑐(𝑡) ⋅ [1 + 𝑘
4 (𝑥2 + 𝑦2 + 𝑧2)]}

−2
(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2)

(14.1)

with 𝑘 = +1, 0 or −1. By way of visualization in 2𝐷- rather than in
4𝐷-representation, such metrics are carried for instance by surfaces of
revolution in 3𝐷-space. Such Riemannian spaces of constant curvature
(including Euclidean, elliptic and hyperbolic ones for 𝑘 = +1, 0 or −1
respectively) are very important, since in such spaces rulers can be
moved around without changing which is essential for any geometry
with metric comparisons. This concerns solutions to Einstein’s 𝐺𝑅𝑇 ,
but actually the Lorentz-Fitzgerald transformations which are key in
𝑆𝑅𝑇 are a special case of Gielis transformations with a nice geometrical
interpretation [47], since they provide for stretchable rulers.

The notion of the notion of curvature can then also be generalized. In
the Oresme-Newton tradition, the dominant view in science, curvature
of curves is compared with the classic Euclidean circle. It is a pointwise



14.4 Curvature Can Be Based on the Shape Itself 123

Figure 65. Left: the classic result of rotating a red circle relative to a
green one. Center and right: a chain is rotated along the curve following
the space.

procedure and the radius of this circle is called the radius of curvature.
Consequently, one curve has a circle of curvature which is the curve
itself and that is the circle. In all other cases the procedure becomes
pointwise, i.e. in each point of a curve we need to determine the best
fitting circle.

The alternative is to start from the unit circle and use this as an
osculating curve. Then any normal polar shape can be used and the
process is global too, not local. Fitting is then no longer a local process
of fitting a circle to a point on a curve, but it becomes a global process
for the complete shape, much in the same way as the osculating circle fits
a circle everywhere (Figure 65). Hence this process of defining curvature
is global rather than local (or “glocal” as referring to a zone rather than
to a point).

Starting from this novel type of shape description and curvature of
shapes, we can define, analogous to curvature of curves using circles,
Lamé curvatures 𝑘𝐿 (14.2) and Gielis curvatures 𝑘𝐺𝑇 (14.3):

𝑘𝐿 = 1
𝜌(𝜗) = 𝑛√|𝑐𝑜𝑠(𝜗)|𝑛 + |𝑠𝑖𝑛(𝜗)|𝑛 (14.2)

𝑘𝐺𝑇 = 1
𝜌(𝜗) = [∣ 1

𝐴 cos(𝑚
4 𝜗)∣

𝑛2
+ ∣ 1

𝐵 sin(𝑚
4 𝜗)∣

𝑛3
]

1
𝑛1

(14.3)
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Science’s current main tools are based on the circle as the osculating
curve, which is also the basis for the calculus. In a like manner, we can
use Lamé-Gielis curves as osculating curves and derive calculus from
thereon. A further step is then the generalization for the anisotropic
case of Newton’s law of gravitation and Coulomb’s law for electrostatic
attraction, both depending on the square of the distance between two
masses or two masses or charges, namely 1/𝜌2(𝜗).

14.5 New Lenses for 20/20 Vision in the
Natural Sciences

We build models about our observations of natural phenomena and
shapes. Observations in botany led to the generalization of Lamé
curves to Gielis transformations and to the notion of Universal Natural
Shapes, where one generalization of the Pythagorean theorem leads to
a unified description of natural shapes, great and small, living and non-
living. For our observations, perception is crucial. In the early days
after discovering Lamé curves to model plants and flowers, several
botanists and others replied that the shapes of Marsilea leaves or
Hydrangea sepals (Figure 66) are round or circular. The same answer
from artists or scientists. But when they were shown Lamé curves they
all immediately agreed that these shapes were indeed Lamé curves,
intermediate between circle and square.

Figure 66. Left: leaves of Marsilea. Center: sepals of Hydrangea “Blue
Wave”. Right: a snowflake with short and long sides.
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Ice has a molecular symmetry of six and most well-known snowflakes
indeed have this hexagonal symmetry. In Figure 66, a snowflake is
shown with alternating long and short sides. The general view is that
it is a truncated triangle. A classical Fourier series would indicate a
strong amplitude at 3. Some form of symmetry-breaking or reduction
has occurred and the original hexagonal symmetry of ice is reduced
to three. However, if we look through our new glasses, the result with
Equation (9.23) is that we see a hexagon with short S and long L sides.
Just as a rectangle with S-L-S-L sides is obtained from a square with
all sides equal by stretching in one direction, now for the hexagon we
have S-L-S-L-S-L. But despite this change, it remains a hexagon with
its symmetry of six and all snowflakes retain the original symmetry
of ice.

The key is that Lamé-Gielis transformations provide for new glasses
and lenses to study nature, in which many different fields of science can
be unified. By generalizing Lamé’s work (200 years ago) we arrived
at a 21st-century version of the Pythagorean theorem (2,500 years
ago). With our new glasses we see more structure than chaos, more
redundancy than entropy and continuous transformations between
shapes. Circles and squares, ellipses and polygons, starfish and flowers,
are no longer different, but one family of geometrical shapes. It allows
for a quantification of the qualitative in nature. With these lenses we can
study natural shapes from the point of view of curvature and natural
shapes as transformations of circle and spiral in the 2𝐷 case. Gielis
transformations are an effective geometric approach to deal with some
of the global anisotropies in many forms that do occur in nature and
with imperfections or certain kinds of repeated local deviations from
Euclidean perfection in such forms.

Gielis transformations have found hundreds of applications in
technology ranging from antennas to lasers, from data processing to
nanotechnology, from virtual reality to sounds, and more (see [39]).
Figures 67 and 68 left and center show a collection of shapes that differ
from sphere and torus in a few parameters only. Figure 68 right shows
gold nanoparticles, whereby the shape can be adjusted to improve heat
distribution in cancer research.
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Figure 67. A collection of shapes that differ from sphere and torus in
a few parameters only.

Figure 68. Left and center: wave packets and turbulent movements.
Right: gold supershaped nanoparticles [85].

A continuous transformation in just a few parameters (a low-
dimensional manifold) opens doors for all technologies [39]. The main
advantages include:

1. Ultra-compact representations of shape and change: only a few
numbers suffice (Figure 67);

2. Uniform description, also for combinations of shapes [36];
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3. A continuous transformation between shapes (kinematics and
dynamics);

4. Multi-objective optimization using only a few parameters [4];
5. Ultra-fast computations of solutions [54].
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