PART IV

“One must study not what is interesting and curious, but what is
important and essential”

Pafnuty L. Chebyshev
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Chapter 13. From Universal Natural
Shapes to Scientific Methodology

13.1 Universal Natural Shapes

In Part I it was shown that Pythagoras’ theorem, linked to the
concept of orthogonality of vectors, has received numerous extensions
in modern mathematics, particularly in Hilbert spaces. Jean-Baptiste
Joseph Fourier is certainly one of the most cited scholars on the
applications of mathematics in technical literature. In fact, the
introduction of the series and the transform that bear his name
have allowed us to mathematically describe the most diverse physical
phenomena, ranging from the theory of heat to that of vibrations
and electromagnetic phenomena. Fourier series and transforms are
indeed used in every corner of science and technology [70]. An implicit
assumption underlying the Pythagorean theorem, its generalization
for any triangle, Fourier series and Hilbert spaces, is that spaces are
somehow isotropic, i.e. the same in all directions. The locus of points
that one arrives at after a prescribed period of time starting from one
point and going in any direction will result in the classic Euclidean
circle as unit circle. But in nature circles are not common and precisely
the reason why Gabriel Lamé made the connection between his curves
and crystals.

A.C. Thompson: “Space to FEuclid and Newton was uniform and
“isotropic”, the same in all directions. Such a notion flies in the face of
daily experience, where the connotation of up and down s different
from that of east to west. There are preferred directions. Another
good example is the preferred directions that cause crystals to grow as
polyhedra and not spherically like soap bubbles. Unit circles and spheres
are not the familiar round objects from Fuclidean geometry, but are
some other convex shape, called the unit ball.” [99]

The geometer Leopold Verstraelen wrote: “In the same way as Euclidean
geometry in dimension 2 essentially derives from the circle as ground
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figure by which distances may be determined in an isotropic way
when considered from a human point of view, the Lamé curves are
at the basis of the simplest definite Minkowski-Finsler geometries in
which 4-fold anisotropies occur when considered from a human point
of view, and analogous observations can be made in dimensions 3
and more. In this respect, the so-called Gielis curves for dimension
2 and Gielis (hyper)surfaces for dimension 3 (and more) turned out
to be ground figures for describing most natural s-fold anisotropies
(for s = 0,1,2,3,4,5,..., or, for that matter, for any s € R). And,
closely related herewith, by application of the corresponding Gielis
transformations to the “most natural” curves and surfaces of Fuclidean
geometry (e.g. for dimension 2: the circles amongst the closed curves and
the logarithmic spirals amongst the non-closed curves), do result many
of the forms that we do observe in nature — in biology, crystallography,
physics, chemistry, ete.” [102]

These transformations give rise to the simplest Riemann-Finsler
geometries (Section 9.1). At the same time, they are a generalization
of the Pythagorean theorem making use of the classic trigonometric
functions and the four principal mathematical operations. The question
whether Fourier techniques could be used on such anisotropic domains
has been answered affirmatively in Part 111, also for the original problem
of Fourier, but now on a starlike domain [73]. The focus in Part III was
on Gielis domains, but the method of the stretched Laplacian is very
general. It should also be noted that convergence is very fast, typically
less than 10 steps to minimize error. This is of great importance
for the natural sciences because existing mathematical techniques can
be used (Part III). Describing the Laplacian for a stretchable radius,
separation of variables can be used and Fourier-projection methods
led to a solution of boundary value problems (Laplace, Helmholtz and
Poisson equations) on all normal polar 2D and 3D domains, including
Riemann surfaces, for various boundary conditions.

This stands in stark contrast to how technology developed. Fourier’s
original method could be used on a circular domain (“heat plate”).
A few other methods like conformal mapping allowed for extending
these domains, but the statement that finite elements were developed
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to address this problem of limited domains is not far from the truth.
The situation was summarized by Richard Feynman [34]: “The
mathematical problem of the direct method is the solution of Laplace’s
equation Ay = 0. Subject to the condition that ¢ is a suitable constant
on certain boundaries — the surfaces of the conductors. Problems which
imvolve the solution of differential field equations subject to certain
boundary conditions are called boundary value problems. They have been
the subject of considerable mathematical study. In the case of conductors
having complicated shapes, there are no general analytical methods. Even
such a simple problem as that of a charged cylindrical metal closed at
both ends — a beer can — presents formidable mathematical difficulties.
It can be solved only approximately, using numerical methods. The only
general methods of solution are numerical.” Two centuries after Fourier,
the availability of a continuous transform allows for exact solutions on a
wide range of domains in 2D and 3D without the need for meshing. This
can be achieved by generalizing the Laplacian and solving boundary
value problems on any domain. The next step is to couple shapes and
development of shapes to natural curvature conditions (Section 14.2).

13.2 A Wide Range of Natural and
Abstract Shapes

The title of the original paper introducing Gielis transformations in the
American Journal of Botany is “A Generic Geometric Transformation

Figure 43. Advancing geometric description of plant organs.
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Figure 44. Top row: columnar cacti and sections [41]. Bottom row:
Superformula Towers by Lava Architects and their sections in green.

Figure 45. Upper left: Anthenoides tenuis. Upper row: Culcita
schmideliana. Lower left: Stellaster equestris. Lower center left and
lower center right: Tosia australis. Lower right: Tosia magnifica [88].
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Figure 46. Future Fossils. Top right: fossil of a Parawocklumeria
shell with constrictions. Bottom right: one of the Future Fossils with
constrictions.

Figure 47. Left: Diatoms — biological. Right: Diatoms — digital
(www.mrkism.com).

That Unifies a Wide Range of Natural and Abstract Shapes’ [40].
‘Generic’ points to the applicability of a wide group of shapes, forms and
phenomena, but the term ‘Unifies’ specifies that this transformation not
only works for the abstract shapes in mathematics, but also for natural
shapes. In this section, a range of natural and abstract shapes described
by this transformation are juxtaposed (Figures 43—47).


www.mrkism.com
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13.3 What Can We Do With Two
(or Three) Parameters?

Superellipses are closed Lamé curves and they are widely used now
even in astronomy (Figure 48; [26, 47, 94]). They have also been used
in architecture worldwide. The most illustrious example is Sergel’s Torg
in Stockholm. Piet Hein suggested to the architects to use a superellipse
to optimize space and obtain a uniform curve (Figure 49), whereas the
architects originally used various arcs [37, 41].

This was the inspiration to describe the cross sections of square bamboos
Chimonobambusa quadrangularis using superellipses in plants [40, 42].
This hypothesis was tested on more than 1,436 sections of another
square bamboo, Chimonobambusa utilis (Keng) [59]. This is a medium
to large bamboo with culms 5-10 m tall and 3-4 cm in diameter,
characterized by quadrangular cross sections in the lower and middle
parts of the culms.

This species of bamboo is distributed over a wide area in Sichuan,
Guizhou and Yunnan provinces in China at altitudes of 1,400 to 2,600 m
and average temperatures of 8-16°C', with extreme low temperatures of
—14°C. The name ‘chimono’ derives from the Greek word for winter.

Figure 48. A superelliptical galaxy: LEDA 074886 [52].
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Figure 49. Sergel’s Torg in Stockholm.

Indeed, the shoots of these species develop in autumn, typically from
late August to December, in contrast to all other temperate bamboos
with new shoots sprouting to full height in spring and with lignification
throughout the season. The elongation of square bamboos can halt due
to the cold and start again in spring to attain their full height. The
particular cross-sectional shape of the culms is beneficial with improved
resistance against torsion and bending [41]. From 30 stems, 750 sections
were cut, leading to 1,436 shapes to be analyzed with the shape of the
outer and inner rings (Figure 50). All tested bamboo culms can be
described by superellipses (Figure 51).
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Figure 50. Left: culms of Chimonobambusa quadrangularis ‘Suow’.
Center and right: cross sections of Chimonobambusa utilis and fitted
curves.
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Figure 51. Bamboo culms [104].

One crucial finding in square bamboo stems of Chimonobambusa utilis
is a bimodal distribution of superellipses with n > 2 and subellipses
with n < 2 in Figure 52A and 52B respectively [59]. In particular, and
most pronounced in the outer rings, we find no ellipses (or circles) at
all (Figure 52). We find only super- or subellipses (not deviations from
ellipses). This effect is more outspoken in the outer rings, but one is
reminded of the fact that the tissues furthest from the center contribute
most to counteracting forces of bending and torsion.
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Figure 52. Bimodal distribution of n values of outer rings (A) and
inner rings (B). The boxplot (C) shows mean and median as well as
standard deviations.
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The shape of cross sections of bamboo culms is described by two
parameters, namely one for the shape (n) and one for the size (a/b):

1
/1% cos()[" + [ sin(H)|"

It turns out that for a wide range of natural shapes, a low-parameter
version of GT is sufficient. For example, also the shape of bamboo leaves
is encoded in two parameters, one for the shape n and one for the size,
and the predicted leaf shape matched the observed leaf shape very well
for 46 bamboo species (Figure 53). In this case, the relevant fitting is
given by:

p(0) =

(13.1)

l
m/leos (§) |+ [sin ()

Although the leaf sizes (length and width) of all 46 tested bamboo
species differ considerably, their leaf shapes vary relatively little, but
the difference can be clearly quantified [68]. Whereas in taxonomy
bamboo leaf blades are characterized by qualitative characteristics such
as lanceolate and linear-lanceolate, we now have a clear quantitative
number (the exponent) for a qualitative characteristic. Only two

p() = (13.2)
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Figure 53. Left: leaves of various bamboos. Right: comparison between
scanned leaf profile and predicted leaf profile [68].
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Figure 54. Leaves of Parrotia [89].

parameters account for variations in shape and size between different
bamboo species.

This can also be used for a wide variety of plant leaves (or leaflets on
compound leaves). Figure 54 shows fits of superelliptical curves to leaves
of Parrotia [89], where the area of the leaf and the fitted two-parameter
curve are the same. Note that area, not shape, is the most important
characteristic of foliage leaves in plants, aimed at maximizing the area
available for photosynthesis.

Equation (13.1) was also used as a method to study the tree rings of
seven different conifers or softwoods [87]. In general, cross sections of
softwood trees suggest a circular shape for the tree rings, but perception
can be very misleading. It was shown that tree rings are much better
modeled by superellipses (Figure 55). The modified version of the Gielis
formula used is with all exponents n equal and with a and b different,
which starts from superellipses. Measuring hundreds of tree rings proved
that the model was very efficient. In softwoods it is well known that the
stems tend to spiral and may change direction after some time. This
rotation around the vertical axis is torsion, relative to the axis as a
cylinder, and it has both genetic and environmental components. The
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Figure 55. Superelliptical tree rings in softwoods. From left to right:
Jack pine (Pinus banksiana Lamb), red pine (Pinus resinosa Aiton),
tamarack (Lariz laricina (Du Roi) K. Koch) and white cedar (Thuja
occidentalis L.).

study of tree rings with Equation (13.1) permits a quantification of the
rotation of tree rings over the years and is one of the very first in its
kind to focus on this aspect of growth in trees.

The model is also dynamic. The volume, size and shape of cross sections
(area and perimeter) of cacti changes depending on how much water is
stored in the cactus: it will expand after rainfall and shrink in drier
periods. Having these characteristics available, immediately permits
the study of such ratios in more depth. Ratios such as area/perimeter
or area/polar moment of inertia, etc. can be used. Plants have to
adapt continuously to changing environments caused by temperature,
rainfall and wind, and have to perform multi-objective optimization.
Superellipses and supershapes are excellent solutions [41].

13.4 Chebyshev for Botanists

Fibonacci numbers are a very popular subject of research and recreation,
and one can find innumerable articles on the topic in mathematics,
science, architecture and the arts. Especially in the latter fields they
have achieved an almost divine status, because of the relation to the
golden mean. From a scientific point of view however, one needs to
be very cautious in the application of the series to actual natural or
cultural phenomena. For example, in the arrangement of leaves, the
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Figure 56. Sunflowers in Umbria.

Fibonacci numbers relate the number of spirals going in one direction
to the number of spirals in the other (Figure 56). In a large-scale
experiment of popular science with over 600 sunflowers, only 3 out of
4 of the parastichies on sunflowers were direct Fibonacci numbers. The
other 1/4 (i.e. 25%) were approximate or modified Fibonacci and Lucas
numbers, derived series, or irregular [95].

Gabriel Lamé worked on the recurrent series u, ., = u,  + u, with
initial conditions uy = 0; u; = 1, and for this reason it was known as
the Lamé series. Notwithstanding the fact that various mathematicians
had worked on this series, it was apparently only in 1876 that the name
Fibonacci was linked to this recurrent series [69]. Lamé’s work with the
series was purely mathematical, in contrast to superellipses, which he
developed to deal with natural shapes, in particular crystals.

It is simply a method of recurrence and the starting pair of numbers
determines the outcome. If this pair is (1,1) or (1,2) one obtains the
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Fibonacci series, the so-called main sequence of phyllotaxy. In the
accessory series, the first side number is 1. Then the first pair of side
and diagonal numbers (1,3) will generate the numbers of the Lucas
series (1,3,4,7,...), also known as the first accessory series. The second
and third accessory series start with (1,4) and (1,5) respectively. The
so-called multijugate main sequence starts with (2,4) leading to every
term in the Fibonacci series doubled, namely 2 - (1,1,2,3,5,...). In
the bijugate first accessory series the sequence is double of the Lucas
series: 2+ (1,3,4,7,...). And so on. Finally, the lateral sequences start
with the side number 2 and for the first diagonal number odd numbers
> 5 are used (using 3 generates the Fibonacci series). This lateral
sequence is also known as the anomalous phyllotaxis. Actually, the
symmetry parameter in the Superformula can be a rational number,
such as m = 5/2, generating a pentagram-like shape with five vertices
closing in two rotations (Figure 57) giving the same as the Fibonacci
2/5 phyllotaxis.

Since leaves and scales on pinecones are discrete structures, one should
look to difference equations, polynomials and logarithmic spirals to
study phyllotaxy [41]. For example, Chebyshev polynomials, Lucas
numbers L,, and Fibonacci numbers F), can all be considered as special
cases of the homogeneous linear second order difference equation with

Figure 57. Pentagram symmetries in Huernia flowers.
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constant coefficients ug; uq; v, = au,, +bu,,_; forn > 1. If a and b
are polynomials in x, a sequence of polynomials is generated.

Particularly, if a = 2x and b = —1, we obtain Chebyshev polynomials.
They are of the first kind 7', (z) for uy = 1; u; = x and of the second kind
U, (x) for uy = 1; u; = 2z. Fibonacci numbers F,, arise for a = b = 1;
ug = 0; u; =1. For a =b = 1; uy = 2; u; = 1 we obtain Lucas numbers
L, . Therefore, if in Chebyshev polynomials i = +/—1 is used with
x = 1/2, the results are Lucas numbers L,, for Chebyshev polynomials
of the first kind 7,, and Fibonacci numbers F), for those of the second

kind U,,. There is a range of other beautiful connections [79].

“Real analysts cannot do without Fourier, complexr analysts cannot do
without Laurent, and numerical analysts cannot do without Chebysheuv.
Moreover the mathematics of the connections between the three
frameworks is beautiful.” [101]
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