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Chapter 12. Solution of Problems in
Gielis Domains

Many applications of Mathematical Physics and Engineering are
connected with the Laplacian:

• The wave equation: 𝑢𝑡𝑡 = 𝑎2 Δ2𝑢
• Heat propagation: 𝑢𝑡 = 𝜅 Δ2𝑢
• The Laplace equation: Δ2𝑢 = 0
• The Helmholtz equation: Δ2𝑢 + 𝑘2𝑢 = 0
• The Poisson equation: Δ2𝑢 = 𝑓

• The Schrödinger equation: − ℎ2

2𝑚 Δ2𝜓 + 𝑉 𝜓 = 𝐸𝜓

Boundary value problems relevant to the Laplacian are solved in explicit
form only for domains with a very special shape, namely intervals,
cylinders or domains with special (circular or spherical) symmetries
[1]. In what follows, we limit ourselves to consider the extensions of
classical problems to 2𝐷 normal polar domains of the Gielis type, that
is domains 𝒟 which are starlike with respect to the polar coordinate
system. Then 𝜕𝒟 can be interpreted as an anisotropically stretched unit
circle. Other general problems, or relative to more complex shapes, have
also been considered in [11, 12, 14, 17, 18]. Further extensions have been
made to the case of 3𝐷 domains, but the relevant equations are much
more involved. A list of such articles can be found in the References
section (see [9, 10, 13, 15, 19–21, 45]).

12.1 The Laplacian in Stretched
Polar Coordinates

We introduce in the 𝑥, 𝑦 plane the polar coordinates:

𝑥 = 𝜌 cos 𝜃 , 𝑦 = 𝜌 sin 𝜃 (12.1)
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and the polar equation of 𝜕𝒟:

𝜌 = 𝑟(𝜃) (0 ≤ 𝜃 ≤ 2𝜋) (12.2)

where 𝑟(𝜃) ∈ 𝐶2[0, 2𝜋]. We suppose the domain 𝒟 satisfies:

0 < 𝐴 ≤ 𝜌 ≤ 𝑟(𝜃)

and therefore min𝜃∈[0,2𝜋] 𝑟(𝜃) > 0.

We introduce the stretched radius 𝜌∗ such that:

𝜌 = 𝜌∗ 𝑟(𝜃) (12.3)

and the curvilinear (i.e. stretched) coordinates 𝜌∗, 𝜃 in the plane 𝑥, 𝑦:

𝑥 = 𝜌∗ 𝑟(𝜃) cos 𝜃 , 𝑦 = 𝜌∗ 𝑟(𝜃) sin 𝜃 (12.4)

Therefore, 𝒟 is obtained assuming 0 ≤ 𝜃 ≤ 2𝜋 and 0 ≤ 𝜌∗ ≤ 1.

We show how to modify some classical formulas and we derive methods
to compute the coefficients of Fourier-type expansions representing
solutions of some classical problems. Of course, this theory can be easily
generalized by considering weakened hypotheses on the boundary or
initial data.

The case of the unit circle is recovered assuming 𝜌∗ = 𝜌 and 𝑟(𝜃) ≡ 1.
We consider a 𝐶2(

∘
𝒟) function 𝑢(𝑥, 𝑦) = 𝑢(𝜌 cos 𝜃, 𝜌 sin 𝜃) = 𝑈(𝜌, 𝜃) and

the Laplace operator in polar coordinates:

Δ2𝑢 ∶= 𝜕2𝑢
𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2 = 𝜕2𝑈
𝜕𝜌2 + 1

𝜌
𝜕𝑈
𝜕𝜌 + 1

𝜌2
𝜕2𝑈
𝜕𝜃2 (12.5)

We start representing this operator in the new stretched coordinate
system 𝜌∗, 𝜃. Putting:

𝜌 = 𝑟(𝜃) = 1
𝑅(𝜃) (0 ≤ 𝜃 ≤ 2𝜋) (12.6)

the unit circle is recovered by putting 𝑅(𝜃) ≡ 1.
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Using this polar equation, the corresponding stretched coordinates 𝜌∗, 𝜃
in the plane 𝑥, 𝑦 are given by:

𝑥 = 𝜌∗ cos 𝜃/𝑅(𝜃) , 𝑦 = 𝜌∗ sin 𝜃/𝑅(𝜃) (12.7)

and assuming:

𝑉 (𝜌∗, 𝜃) = 𝑢 [𝜌∗ cos 𝜃/𝑅(𝜃), 𝜌∗ sin 𝜃/𝑅(𝜃)]
the Laplacian becomes:

Δ2𝑢 = [𝑅2(𝜃) + 𝑅′2(𝜃)] 𝜕2𝑉
𝜕𝜌∗2 + 2

𝜌∗ 𝑅(𝜃)𝑅′(𝜃) 𝜕2𝑉
𝜕𝜌∗𝜕𝜃

+ 1
𝜌∗ [𝑅2(𝜃) + 𝑅(𝜃)𝑅″(𝜃)] 𝜕𝑉

𝜕𝜌∗ + 1
𝜌∗2 𝑅2(𝜃)𝜕2𝑉

𝜕𝜃2

(12.8)

For 𝜌∗ = 𝜌 and 𝑅(𝜃) ≡ 1 we find the Laplacian in polar coordinates.

12.2 The Dirichlet Problem for the Laplace
Equation in Gielis Domains

Consider the Dirichlet problem for the Laplace equation:
⎧{
⎨{⎩

𝜕2𝑢
𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2 = 0 in
∘

𝒟

𝑢 = 𝑓(𝑥, 𝑦) on 𝜕𝒟
(12.9)

In [74] we have proven the result:
Theorem 12.1. Putting:

𝑢(𝑥, 𝑦) = 𝑢(𝜌 cos 𝜃, 𝜌 sin 𝜃) = 𝑈(𝜌, 𝜃)

𝐹(𝜃) = 𝑓 [𝑟(𝜃) cos 𝜃, 𝑟(𝜃) sin 𝜃] = 𝛼0
2 +

∞
∑
𝑚=0

(𝛼𝑚 cos𝑚𝜃 + 𝛽𝑚 sin𝑚𝜃)

the solution of the internal Dirichlet problem can be represented as:

𝑈(𝜌, 𝜃) =
∞

∑
𝑚=0

(𝑎𝑚 cos𝑚𝜃 + 𝑏𝑚 sin𝑚𝜃) 𝜌𝑚 (12.10)
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where 𝑎0 = 𝛼0/2 and the coefficients 𝑎𝑚, 𝑏𝑚 (𝑚 = 1, 2, 3, … ) are given
by solving the infinite system:

⎧{{{{{{
⎨{{{{{{⎩

∞
∑
𝑚=1

𝑎𝑚 ∫
2𝜋

0
[𝑟(𝜃)]𝑚 cos𝑚𝜃 cosℎ𝜃 𝑑𝜃

+
∞

∑
𝑚=1

𝑏𝑚 ∫
2𝜋

0
[𝑟(𝜃)]𝑚 sin𝑚𝜃 cosℎ𝜃 𝑑𝜃 = 𝜋𝛼ℎ

∞
∑
𝑚=1

𝑎𝑚 ∫
2𝜋

0
[𝑟(𝜃)]𝑚 cos𝑚𝜃 sinℎ𝜃 𝑑𝜃

+
∞

∑
𝑚=1

𝑏𝑚 ∫
2𝜋

0
[𝑟(𝜃)]𝑚 sin𝑚𝜃 sinℎ𝜃 𝑑𝜃 = 𝜋𝛽ℎ

(ℎ = 1, 2, 3, … )

(12.11)

Example

As an example, we start from the general Gielis equation [40]:

𝑟(𝜃) = [𝑐 (∣cos (1
2𝑚𝜋𝜃)
𝛼 ∣

𝑛2

+ ∣sin (1
2𝑚𝜋𝜃)
𝛽 ∣

𝑛3

)]
−1/𝑛1

𝜃 ∈ [0, 1]

(12.12)
by choosing particular values of the parameters.

By assuming in Equation (12.12) that 𝑐 = 22, 𝛼 = 5, 𝛽 = 8, 𝑚 = 10,
𝑛1 = 𝑛3 = 6 and 𝑛2 = 4 we obtain the shape of the relevant domain 𝒟
in Figure 38.

Let 𝑓(𝑥, 𝑦) = cosh(𝑥 + 𝑦) + 5𝑥2𝑦 be the function representing boundary
values. Then we obtain the results reported in Table 3. In the first
column we show the 𝐿2(𝜕𝒟) norm of the boundary error 𝑓 −𝑢ℎ (where
𝑢ℎ denotes the (2ℎ + 1)th partial sum of the approximating Fourier
series) and in the second column the 𝐿2(𝒟) norm of the inside error,
i.e. the 𝐿2(𝒟) norm distance of Δ𝑢ℎ from zero.

The obtained results, with P. Natalini as a coauthor (see [74]), show the
convergence (in general a.e.) of the approximating sequence of functions
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Figure 38. Starfish domain.

||𝑓 − 𝑢1||𝐿2
= 0.000335952 ||Δ𝑢1||𝐿2

= 0. × 10−17

||𝑓 − 𝑢2||𝐿2
= 0.000133587 ||Δ𝑢2||𝐿2

= 0. × 10−17

||𝑓 − 𝑢3||𝐿2
= 0.000101291

||𝑓 − 𝑢4||𝐿2
= 9.02500 × 10−5

||𝑓 − 𝑢5||𝐿2
= 5.42434 × 10−5

||𝑓 − 𝑢6||𝐿2
= 4.75581 × 10−5

||𝑓 − 𝑢7||𝐿2
= 4.75567 × 10−5

||𝑓 − 𝑢8||𝐿2
= 4.75565 × 10−5

Table 3. 𝐿2 norms of boundary and inside approximation errors.

to the function 𝑓 , according to the general results on Fourier series
proven by L. Carleson [22].

12.3 The Heat Problem in Gielis Domains
The heat problem for a plate with a general shape is often reduced
to the circular case by using the conformal mappings technique
(see e.g. [35, 65]), but only very special cases can be treated analytically
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by using this method since only few explicit equations for the relevant
conformal mappings are known. However, it is possible to use the
stretched coordinates system in order to obtain a quite general result
for a Gielis domain.

Consider a plate with normal polar shape 𝒟 and known diffusivity 𝜅.
Suppose the boundary temperature is zero for every 𝑡 ≥ 0 and the
initial temperature is given by the continuous function 𝑓(𝑥, 𝑦) so that
the problem of finding the temperature of the plate for every 𝑡 > 0 is
expressed by:

⎧{
⎨{⎩

𝜕𝑢
𝜕𝑡 = 𝜅 (𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢
𝜕𝑦2 ) in

∘
𝒟

𝑢(𝑥, 𝑦, 𝑡)|(𝑥,𝑦)∈𝜕𝒟 = 0 , 𝑢 (𝑥, 𝑦, 0) = 𝑓 (𝑥, 𝑦)
(12.13)

In [73], with P. Natalini and R. Patrizi as coauthors, the following result
was proven:

Theorem 12.2. The above heat problem admits a classical solution:

𝑢(𝑥, 𝑦, 𝑡) ∈ [𝐶2(
∘

𝒟) × 𝐶1(R+)] ∩ 𝐶0[𝒟̄ ×R+]

such that the following generalized Fourier expansion in terms of Bessel
functions holds:

𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝜌, 𝜃, 𝑡)

=
∞

∑
𝑚=0

∞
∑
𝑘=1

(𝐴𝑚,𝑘 cos𝑚𝜃 + 𝐵𝑚,𝑘 sin𝑚𝜃)

× 𝐽𝑚 (𝑗(𝑚)
𝑘

𝑟(𝜃) 𝜌) exp⎡⎢
⎣

− (𝑗(𝑚)
𝑘

𝑟(𝜃))
2

𝜅𝑡⎤⎥
⎦

(12.14)

Putting 𝑈(𝜌, 𝜃, 0) = 𝐹(𝜌, 𝜃) =∶ 𝐺(𝜌∗, 𝜃) where:

𝐺(𝜌∗, 𝜃) =
∞

∑
𝑚=0

[𝛼𝑚(𝜌∗) cos𝑚𝜃 + 𝛽𝑚(𝜌∗) sin𝑚𝜃] (12.15)
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so that:

𝛼0(𝜌∗) = 1
𝜋 ∫

2𝜋

0
𝐺(𝜌∗, 𝜃) 𝑑𝜃

𝛼𝑚(𝜌∗) = 1
𝜋 ∫

2𝜋

0
𝐺(𝜌∗, 𝜃) cos𝑚𝜃 𝑑𝜃 (𝑚 = 1, 2, … )

𝛽𝑚(𝜌∗) = 1
𝜋 ∫

2𝜋

0
𝐺(𝜌∗, 𝜃) sin𝑚𝜃 𝑑𝜃 (𝑚 = 1, 2, … )

(12.16)

the coefficients 𝐴𝑚,𝑘, 𝐵𝑚,𝑘 are given by:

⎧{{{{{{
⎨{{{{{{⎩

𝐴0,𝑘 = 1
[𝐽1(𝑗(0)

𝑘 )]
2 ∫

1

0
𝜌∗ 𝛼0(𝜌∗) 𝐽0(𝑗(0)

𝑘 𝜌∗) 𝑑𝜌∗

𝐴𝑚,𝑘 = 2
[𝐽𝑚+1(𝑗(𝑚)

𝑘 )]
2 ∫

1

0
𝜌∗ 𝛼𝑚(𝜌∗) 𝐽𝑚(𝑗(𝑚)

𝑘 𝜌∗) 𝑑𝜌∗

𝐵𝑚,𝑘 = 2
[𝐽𝑚+1(𝑗(𝑚)

𝑘 )]
2 ∫

1

0
𝜌∗ 𝛽𝑚(𝜌∗) 𝐽𝑚(𝑗(𝑚)

𝑘 𝜌∗) 𝑑𝜌∗

(12.17)

Remark 3. Note that the above formulas still hold if the function
𝑟(𝜃) is a piecewise continuous function and if the initial data are given
by square integrable functions, not necessarily continuous, so that the
relevant coefficients 𝛼ℎ, 𝛽ℎ in Equation (12.15) are finite.

Example

In the following example we consider, for the starlike plate, a Gielis
equation of the type:

𝑟(𝜃) = 𝑐 ⎡⎢
⎣

⎛⎜
⎝

∣
cos (𝑚1𝜃

4 )
𝛼 ∣

𝑛1

+ ∣
sin (𝑚2𝜃

4 )
𝛽 ∣

𝑛2

⎞⎟
⎠

⎤⎥
⎦

−1/𝑛3

(12.18)
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Figure 39. Shape of the domain 𝒟.

||𝜅Δ𝑢30 − 𝜕𝑡𝑢30||𝐿2( ∘
𝒟) ||𝑢30||𝐿2(𝜕𝒟)

𝑡 = 0 0.172694 5.87219 × 10−37

𝑡 = 1 101.478 5.70500 × 10−48

𝑡 = 2 1.48269 × 10−7 5.09531 × 10−58

𝑡 = 3 5.87713 × 10−17 5.77811 × 10−68

Table 4. 𝐿2 norms of boundary and inside approximation errors at
different times.

By assuming in (12.18) that 𝑐 = 0.015, 𝛼 = 12, 𝛽 = 4,𝑚1 = 12,𝑚2 = 6,
𝑛1 = 8, 𝑛2 = 12 and 𝑛3 = 6, we obtain the shape of the relevant domain
𝒟 in Figure 39.

Let 𝜅 = 1.5 be the constant representing the diffusivity and 𝑓(𝑥, 𝑦) =
sinh(𝑥𝑦)+log(𝑥2𝑦2+1) the function representing the initial temperature.
In Table 4, the 𝐿2(

∘
𝒟) and 𝐿2(𝜕𝒟) norms of the inside and boundary

errors 𝜅Δ𝑢30 − 𝜕𝑡𝑢30 and 𝑢30 respectively are shown at the times
𝑡 = 0, 1, 2, 3, where 𝑢30 denotes the 30th partial sum of the expansion
in Equation (12.14).
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Figure 40. The approximating solution 𝑢30 and temperature 𝑓 at time
𝑡 = 0.

In Figure 40 are shown, at time 𝑡 = 0, the approximating solution 𝑢30
and the initial temperature 𝑓 , both expressed in polar coordinates.
Remark 4. We note that when the boundary values have wide
oscillations, it is necessary to increase the number 𝑁 of terms in the
relevant Fourier expansion in order to obtain better results.

Remark 5. The 𝐿2 norm of the difference between the exact solution
and its approximate values is always vanishing in the interior of the
considered domain and generally small on the boundary. Point-wise
convergence seems to be true on the whole boundary, with the only
exception a set of measure zero, corresponding to cusps or quasi-cusped
points (i.e. regular points of the curve such that in a very small
neighborhood the tangent makes a rotation of almost 180∘). In these
points, oscillations of the approximate solution (recalling the classical
Gibbs phenomenon) usually appear. Therefore, the theoretical results
of L. Carleson [22] are confirmed, even in the considered case.

12.4 The Wave Equation in Gielis Domains
Let us consider a membrane with normal polar shape 𝒟 and made from
a material characterized by constant propagation speed 𝑎. Moreover,
suppose the boundary displacement is zero for every 𝑡 ≥ 0 and the initial
displacement and velocity distributions are given by the continuous
functions 𝑓 (𝑥, 𝑦) and 𝑔 (𝑥, 𝑦) respectively, so that the problem of finding
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the displacement at any location within the body for every 𝑡 > 0 is
expressed by:

⎧{{{{
⎨{{{{⎩

𝜕2

𝜕𝑡2 𝑣 (𝑥, 𝑦, 𝑡) = 𝑎2Δ2𝑣 (𝑥, 𝑦, 𝑡) in 𝒟̊
𝑣 (𝑥, 𝑦, 𝑡)|(𝑥,𝑦)∈𝜕𝒟 = 0
𝑣 (𝑥, 𝑦, 0) = 𝑓 (𝑥, 𝑦)
𝜕
𝜕𝑡𝑣 (𝑥, 𝑦, 0) = 𝑔 (𝑥, 𝑦)

(12.19)

In [16], with D. Caratelli and P. Natalini as coauthors, the following
result was proven:

Theorem 12.3. Let:

𝑓 (𝜚∗𝑅 (𝜗) cos𝜗, 𝜚∗𝑅 (𝜗) sin𝜗) = 𝐹 (𝜚∗, 𝜗)

=
+∞
∑
𝑚=0

[𝛼𝑚 (𝜚∗) cos𝑚𝜗 + 𝛽𝑚 (𝜚∗) sin𝑚𝜗] (12.20)

𝑔 (𝜚∗𝑅 (𝜗) cos𝜗, 𝜚∗𝑅 (𝜗) sin𝜗) = 𝐺 (𝜚∗, 𝜗)

= 𝑎
𝑅 (𝜗)

+∞
∑
𝑚=0

[𝛾𝑚 (𝜚∗) cos𝑚𝜗 + 𝛿𝑚 (𝜚∗) sin𝑚𝜗]
(12.21)

where:

{ 𝛼𝑚 (𝜚∗)
𝛽𝑚 (𝜚∗) } = 𝜖𝑚

2𝜋 ∫
2𝜋

0
𝐹 (𝜚∗, 𝜗) { cos𝑚𝜗

sin𝑚𝜗 } 𝑑𝜗 (12.22)

{ 𝛾𝑚 (𝜚∗)
𝛿𝑚 (𝜚∗) } = 𝜖𝑚

2𝜋𝑎 ∫
2𝜋

0
𝐺 (𝜚∗, 𝜗) 𝑅 (𝜗) { cos𝑚𝜗

sin𝑚𝜗 } 𝑑𝜗 (12.23)

and 𝜖𝑚 is Neumann’s symbol [1]. Then the initial-value problem for the
wave equation (12.19) admits a classical solution:

𝑣 (𝑥, 𝑦, 𝑡) ∈ 𝐶2 (𝒟̊ × ℝ+) ∩ 𝐶0 (𝒟̄ × ℝ+) (12.24)
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such that the following generalized Fourier expansion in terms of Bessel
functions holds:

𝑣 (𝑥, 𝑦, 𝑡) = 𝑢 (𝜌, 𝜗, 𝑡) =
+∞
∑
𝑚=0

+∞
∑
𝑘=1

𝐽𝑚 (𝜁(𝑚)
𝑘 𝜌

𝑅 (𝜗)) [𝐴𝑚,𝑘 cos𝑚𝜗 cos 𝑎𝜁(𝑚)
𝑘 𝑡

𝑅 (𝜗)

+𝐵𝑚,𝑘 sin𝑚𝜗 cos 𝑎𝜁(𝑚)
𝑘 𝑡

𝑅 (𝜗) + 𝐶𝑚,𝑘 cos𝑚𝜗 sin 𝑎𝜁(𝑚)
𝑘 𝑡

𝑅 (𝜗)

+𝐷𝑚,𝑘 sin𝑚𝜗 sin 𝑎𝜁(𝑚)
𝑘 𝑡

𝑅 (𝜗) ] (12.25)

where 𝜁(𝑚)
𝑘 denotes the 𝑘 − 𝑡ℎ positive root of the Bessel function

of the first type and order 𝑚 ∈ ℕ0. Imposing the initial conditions
𝑈 (𝜚∗, 𝜗, 0) = 𝐹 (𝜚∗, 𝜗) and 𝑈𝑡 (𝜚∗, 𝜗, 0) = 𝐺 (𝜚∗, 𝜗), the coefficients
𝐴𝑚,𝑘, 𝐵𝑚,𝑘, 𝐶𝑚,𝑘, 𝐷𝑚,𝑘 are found to be:

{ 𝐴𝑚,𝑘
𝐵𝑚,𝑘

} = 2
𝐽𝑚+1 (𝜁(𝑚)

𝑘 )
2 ∫

1

0
{ 𝛼𝑚 (𝜚∗)

𝛽𝑚 (𝜚∗) } 𝐽𝑚 (𝜁(𝑚)
𝑘 𝜚∗) 𝜚∗𝑑𝜚∗

(12.26)

{ 𝐶𝑚,𝑘
𝐷𝑚,𝑘

} = 2
𝜁(𝑚)

𝑘 𝐽𝑚+1 (𝜁(𝑚)
𝑘 )

2 ∫
1

0
{ 𝛾𝑚 (𝜚∗)

𝛿𝑚 (𝜚∗) } 𝐽𝑚 (𝜁(𝑚)
𝑘 𝜚∗) 𝜚∗𝑑𝜚∗

(12.27)

with 𝑚 ∈ ℕ0 and 𝑘 ∈ ℕ.

Example

In the following example we assume for the boundary 𝜕𝒟 a general
polar equation of the type:

𝑅(𝜗) = (∣cos
𝑝𝜗
4

𝛾1
∣
𝜈1

+ ∣sin
𝑞𝜗
4

𝛾2
∣
𝜈2

)
−1/𝜈0

(12.28)
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By assuming in (12.28) that 𝛾1 = 𝛾2 = 3/4, 𝑝 = 𝑞 = 7, 𝜈0 = 10,
𝜈1 = 𝜈2 = 6 and 𝜗 ∈ [0, 2𝜋], the domain 𝒟 features an equisetum-like
shape as can be seen in Figures 41 and 42.

Figure 41. Initial distributions of displacement (top) and velocity
(bottom) within the equisetum-shaped domain𝒟 described by the polar
equation (12.28) with parameters 𝛾1 = 𝛾2 = 3/4, 𝑝 = 𝑞 = 7, 𝜈0 = 10
and 𝜈1 = 𝜈2 = 6.

Figure 42. Spatial distribution of the displacement 𝑣 (𝑥, 𝑦, 𝑡) within
an equisetum-shaped domain 𝒟 at different times, as predicted by the
Fourier expansion representation (12.25) with orders 𝑀 = 𝐾 = 60.
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𝑒𝑀,𝐾 𝑀 = 0 𝑀 = 30 𝑀 = 60
𝐾 = 1 99.325% 74.383% 74.382%
𝐾 = 30 91.050% 15.745% 15.744%
𝐾 = 60 90.612% 4.291% 4.239%

Table 5. Relative boundary error 𝑒𝑀,𝐾 for different expansion orders
of the Fourier-like solution of the initial-value problem for the wave
equation (12.19) within the domain 𝒟 described by the polar equation
(12.28) with parameters 𝛾1 = 𝛾2 = 3/4, 𝑝 = 𝑞 = 7, 𝜈0 = 10 and
𝜈1 = 𝜈2 = 6.

Let 𝑓 (𝑥, 𝑦) = log (1 + 𝑥2𝑦2) − 1
2𝑥𝑦 cos (𝑥 + 𝑦) and 𝑔 (𝑥, 𝑦) = 𝑥3𝑦2 +

3𝑥2𝑦 − 2𝑥 be the functions describing the initial distributions of
displacement and velocity, respectively, within 𝒟 under the hypothesis
of normalized propagation constant 𝑎 = 1. Then, with regard to the
relative boundary error 𝑒𝑀,𝐾, the numerical results summarized in
Table 5 are obtained. In particular, as it appears from Figure 41,
the selection of the expansion orders 𝑀 = 𝐾 = 60 leads to a very
accurate Fourier representation of the solution of the relevant initial-
value problem. Finally, we show in Figure 42 the spatial distribution of
the displacement 𝑣 (𝑥, 𝑦, 𝑡) within the considered domain 𝒟 at different
times, as predicted by Equation (12.25) with the mentioned expansion
orders.
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