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Chapter 10. Waves and More

10.1 Relations to Chebyshev and Pseudo-
Chebyshev Forms and to Fourier Series

The Gielis formula as generalization of Lamé curves and superellipses
uses trigonometric functions which are transcendental. These equations
can be rewritten in terms of Chebyshev polynomials [41, 46], for
𝑥 = cos (𝑚

4 𝜗), based on Grandi curves. The curves defined by (9.23)
can then be considered as algebraic functions. They can also be used
as transformations on Chebyshev polynomials and pseudo-Chebyshev
functions. For 𝑚 = 1 and 𝑛1,2,3 = 𝑝 with 𝑝 an integer, this describes
supercircles and superellipses, and circles or ellipses when 𝑚 = 1 and
𝑛1,2,3 = 2:

𝜌(𝑥) = 1
𝑛1√∣1

𝑎 𝑇𝑚(𝑥)∣𝑛2 + ∣1
𝑏 𝑈𝑚−1(𝑥)∣𝑛3

⋅ 𝑓(𝑥) (10.1)

There exists also a direct connection between pseudo-Chebyshev
functions and flowers. Using Gielis transformations on Grandi or
Rhodonea curves, but with 𝑚

2 [44]:

𝜌(𝜗; 𝑎, 𝑏, 𝑛1, 𝑛2, 𝑛3, 𝑛4) = ∣cos(𝑚
2 𝜗)∣𝑛4

𝑛1√∣1
𝑎 cos(𝑚

2 𝜗)∣𝑛2 + ∣1
𝑏 sin(𝑚

2 𝜗)∣𝑛3
(10.2)

this generates a wide range of naturally looking flowers (see Figure 27).

Equation (10.2) with 𝑚
2 can be rewritten in terms of the recently defined

pseudo-Chebyshev functions of half-integer values 𝑘 + 1
2 [46, 77] (see

Chapter 8):

𝑇1
2

= cos(1
2 arccos(𝑥)) and 𝑇𝑘+ 1

2
= cos [(𝑘 + 1

2) arccos(𝑥)]
(10.3)
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Figure 27. Choripetalous five-petalled flowers with the corresponding
constraining superpolygons and parameters [44, 46].

It is remarkable that flowers and leaves are connected to these
polynomials and functions. Their multiple uses in mathematics can
serve as a guide in the study of botany. For the study of flowers
one can make use of the orthogonality properties of pseudo-Chebyshev
functions [6].

This directly leads to Fourier series solutions using pseudo-Chebyshev
functions of the fourth kind. Consider for an 𝐿1[−𝜋, 𝜋], 2𝜋-periodic
function [6]:

𝑓(𝑥) ∼ 1
2𝑎0 +

∞
∑
𝑘=1

𝑎𝑘 cos(𝑘𝜋𝑥
𝐿 ) + 𝑏𝑘 sin(𝑘𝜋𝑥

𝐿 ) (10.4)

with 𝑎𝑘, 𝑏𝑘 the Fourier coefficients of 𝑓(𝑥). By Carleson’s theorem, this
series converges in mean and even pointwise up to a set of Lebesgue
measure zero. Since the partial sums can be written as:

𝑠𝑛(𝑥, 𝑓) = 𝑎0
2 +

𝑛
∑
𝑘=1

𝑎𝑘 cos(𝑘𝑥) + 𝑏𝑘 sin(𝑘𝑥) = 1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑥 − 𝑡) 𝐷𝑛(𝑡) 𝑑𝑡

(10.5)

the representation formula of the Dirichlet kernel holds:

𝐷𝑛(arccos(𝑥)) = 𝑊𝑛(𝑥) = 2𝑇1
2
(𝑥)𝑈𝑛− 1

2
(𝑥) (10.6)
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Here𝑊𝑛(𝑥) is a pseudo-Chebyshev function of the fourth kind [6], which
can be expressed using pseudo-Chebyshev functions of the first and
second kind. A consequence of this result is that the partial sums of a
Fourier series can be written in terms of pseudo-Chebyshev functions,
as follows:

𝑠𝑛(𝑥, 𝑓) = 1
𝜋 ∫

1

−1
𝑓(𝑥 − arccos 𝜏) 𝑊𝑛(𝜏) 1√

1 − 𝜏2 𝑑𝜏

= 2
𝜋 ∫

1

−1
𝑓(𝑥 − arccos 𝜏) 𝑇1

2
(𝜏) 𝑈𝑛− 1

2
(𝜏) 1√

1 − 𝜏2 𝑑𝜏
(10.7)

The flowers in Figure 27 can be understood as a single-term Grandi
curve inscribed in a polygon defined by Equation (9.23). As a
generalization of Fourier series (or trigonometric series in general) each
individual term of a Fourier series can be transformed. One can define
a generalized series, with 𝜌0, 𝜌𝑘 defining a stretchable radius, as [45]:

𝜌(𝜗) = 𝜌0𝑎0 +
∞

∑
𝑘=1

𝜌𝑘𝑎𝑘 cos(𝑘𝑥) + 𝜌𝑘𝑏𝑘 sin(𝑘𝑥) (10.8)

Since the first constant term of the series 𝜌0𝑎0 can be associated with
a particular transformation 𝜌0, any shape described by Equation (9.23)
is described precisely in one term of this generalized series 𝜌0𝑎0 without
any need for additional terms. Figure 28 shows a sum of three terms.

Figure 28. 𝑘-type Gielis curve with 𝑘 = 3 for 𝜌(𝜗; 𝑓(𝜗), 𝑎, 𝑏, 𝑛1, 𝑛2,
𝑛3). The bird is the sum of 𝜌1(𝜗; cos(3

2𝜗), 1, 1, 3, 2, 2, 2), 𝜌1(𝜗; cos(2𝜗),
1, 1, 4, 1, 1, 1) and 𝜌1(𝜗; cos(5

2𝜗), 1, 1, 5, 1, 1, 1). [45]
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10.2 Coordinate Functions of First and
Higher Order and Square Waves

Equation (9.23) and the generalized Fourier series of Equation (10.8)
can be used to generate waves. One example is the generation of square
waves. A square wave may be generated in various ways, e.g. with
reference to step functions such as the Heaviside step function (Equation
10.9). Note that the Dirac delta function is the distributional derivative
of the Heaviside function [43].

𝐻(𝑥) = { 0 𝑥 < 0
1 𝑥 ≥ 0 (10.9)

An alternative method is synthesis via Fourier series. One well-
known disadvantage of this is the Fourier-Gibbs phenomenon, whereby
oscillations occur in points of measure zero. These phenomena are an
inherent feature of the method, but may be mediated in practice by
using sinc𝑥 = sin𝜋𝑥

𝜋𝑥 (Equation 10.10):

𝑓(𝑥) = 1
2𝑎0 +

𝑚−1
∑
𝑘=1

sinc 𝑘
𝑚 [𝑎𝑘 cos(𝑘𝜋𝑥

𝐿 ) + 𝑏𝑘 sin(𝑘𝜋𝑥
𝐿 )] (10.10)

In order to generate a square wave which is differentiable everywhere,
all exponents in Equation (9.24) are equal to 1, 𝑚 = 4 and 𝐴 is very
large, so that the cosine term becomes very small, 𝜀. In Figure 29, the
shape of the sine wave is given for various values of 𝜀 [43].

As long as 𝜀 is finite and not zero, the function is differentiable
everywhere. In this way, Gibbs phenomena are avoided and
differentiability can be ensured everywhere. These curves can also be
framed in a window, e.g. the interval [−1; 1] or in a Gaussian window

1
𝜎

√
2 exp [− (𝜗−𝜇

2𝜎 )𝑛] for various values of 𝜀 (see Figure 30).

sin𝜗
𝜀 + | sin𝜗| (10.11)

Second and higher order trigonometric functions based on Equation
(9.23) can be generated. Given a shape 𝜌(𝜗) defined by Equation (9.23),
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Figure 29. Sines according to Equation (10.11) for varying 𝜀 = 10−𝛼,
with 𝛼 = 0 (green), 𝛼 = 1 (blue), 𝛼 = 3 (red solid), 𝛼 = 5 (orange
solid) and 𝜀 = 0 (black dashed) [43].

Figure 30. Left: cosines for 𝜀 = 10−5 in Gaussian window with 𝑛 = 2.
Right: decaying square wave [43].

the polar plot is generated by:

𝑐(𝜗) = 𝛾(𝜗) cos(𝜗)
𝑠(𝜗) = 𝛾(𝜗) sin(𝜗)

(10.12)

The functions 𝑐(𝜗) and 𝑠(𝜗) are displayed in Figure 31 with values
𝐴 = 2, 𝐵 = 1, 𝑚1 = 1.5, 𝑚2 = 0.5, 𝑛1 = 1, 𝑛2 = 2 and 𝑛3 = 3. This
can be continued to any order.
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Figure 31. Supertrigonometric functions with associated polar graphs
and the Gaussian version.

Figure 32. Polyphonic timbres inherent to Gielis curves with
parameter values 𝜌(𝜗, 4/5, 1, 1, 1, 1, 1) (left) and 𝜌(𝜗, 4/5, 1, 1, 1, 9, 9)
(right).

Figure 32 displays rational Gielis curves with 𝑚 a rational number
(𝑚 = 4/5). Increasing the values of the 𝑛2, 𝑛3 parameters lowers the
magnitude of the main 𝑞-th harmonic partial (5th in this example) and
raises the magnitudes of the other partials, as can be seen in the two
harmonic spectra of the 𝑋-coordinates waveforms. The spectra of the
𝑌 -coordinates waveforms (not shown) have similar polyphonic spectral
characteristics [27].

10.3 Higher Dimensions
Equation (9.23) can be extended to any dimension. In 3D,
both spherical coordinates (Equation 10.13) [9] and parametric
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representations (Equation 10.14) can be used:

𝑅(𝜗, 𝜑) = 𝑐 [∣sin
𝑝𝜗
2 cos

𝑞𝜑
4

𝛾1
∣
𝑛1

+ ∣sin
𝑝𝜗
2 sin

𝑞𝜑
4

𝛾2
∣
𝑛2

+ ∣cos
𝑝𝜗
2

𝛾3
∣
𝑛3

]
−1/𝑛0

(10.13)

The parametric equation (10.14) is based on two perpendicular cross
sections 𝜌1, 𝜌2 which can be of different sizes leading to toroidal
structures (see Figures 33 & 34) [41]:

⎧{
⎨{⎩

𝑥 = 𝜌1(𝜗) cos(𝜗) 𝜌2(𝜑) cos(𝜑)
𝑦 = 𝜌1(𝜗) sin(𝜗) 𝜌2(𝜑) cos(𝜑)
𝑧 = 𝜌2(𝜑) sin(𝜑)

(10.14)

This can be further extended within the framework of Generalized
Möbius-Listing surfaces and bodies with Equations (10.15) and (10.16)
[49, 96, 97]. Both the basic line and the cross section can be defined
by any of the curves discussed earlier. The lower index of the notation
𝐺𝑀𝐿𝑛

𝑚 denotes the symmetry of the cross section and the upper index
denotes the number of twists before joining the ends. Also classic
prisms and canal surfaces belong to this class. A more general class is
Generalized Rotating and Twisting bodies 𝐺𝑅𝑇 𝑛

𝑚. Examples are shown
in Figures 35 and 36.

⎧{
⎨{⎩

𝑋(𝜏, 𝜓, 𝜃) = (𝑅(𝜃) + 𝑝(𝜏, 𝜓) cos (𝑛𝜃
𝑚 ) − 𝑞(𝜏, 𝜓) cos (𝑛𝜃

𝑚 )) cos(𝜃)
𝑌 (𝜏, 𝜓, 𝜃) = (𝑅(𝜃) + 𝑝(𝜏, 𝜓) cos (𝑛𝜃

𝑚 ) − 𝑞(𝜏, 𝜓) cos (𝑛𝜃
𝑚 )) sin(𝜃)

𝑍(𝜏, 𝜓, 𝜃) = 𝐾(𝜃) + (𝑝(𝜏, 𝜓) sin (𝑛𝜃
𝑚 ) + 𝑞(𝜏, 𝜓) cos (𝑛𝜃

𝑚 ))
(10.15)

or alternatively:

⎧{
⎨{⎩

𝑋(𝜏, 𝜓, 𝜃) = (𝑅(𝜃) + 𝑝(𝜏, 𝜓) cos (𝜓 + 𝑛𝜃
𝑚 )) cos(𝜃)

𝑌 (𝜏, 𝜓, 𝜃) = (𝑅(𝜃) + 𝑝(𝜏, 𝜓) cos (𝜓 + 𝑛𝜃
𝑚 )) sin(𝜃)

𝑍(𝜏, 𝜓, 𝜃) = 𝐾(𝜃) + 𝑝(𝜏, 𝜓) sin (𝑛𝜃
𝑚 )

(10.16)
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Figure 33. 3D shapes defined by Equation (10.14).

Figure 34. 3D shapes defined by Equation (10.14).

The main advantage of such general coordinate systems, as also
observed by Lamé, is that to each physical shape or phenomenon a
best fitting coordinate system can be found. The goal of mathematical
physics then is to solve the boundary value problems associated with
the problem under investigation [41, 55].

Both the cross section and the basic line can be defined by Equation
(9.24) and a time component can operate on cross section, basic line
and twisting parameters for dynamical studies.
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Figure 35. Prisms and 𝐺𝑀𝐿𝑛
𝑚 surfaces.

Figure 36. Generalized Rotating and Twisting bodies 𝐺𝑅𝑇 𝑛
𝑚.
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