PART 11

“While algebra and analysis provide the foundations of mathematics,
geometry is at the core™

S.-S. Chern

!Chern, S.-S. Introduction. As cited in: F. Dillen & L. Verstraelen (eds.), Handbook
of Differential Geometry, Vol. 1. Elsevier, Amsterdam, Netherlands, 2000.
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Chapter 9. From Lamé Curves to
Gielis Transformations

9.1 Riemann’s Geometric Ideas

In the mid-19th century geometry went multidimensional when
Riemann defined analytically n-fold extended manifolds, where each
point can be described by an nm-tuple of numbers (their coordinates).
Following Gauss’ work on surfaces embedded in E2 he also used systems
of local coordinates, as a relevant extension of the geometry of surfaces
in Euclidean space E3 based on the Pythagorean theorem [61]. In his
famous memoir, Riemann explicitly mentioned the geometric tangent
2 — D indicatrix of fourth order z* + y* = 1 as an extension of the
Euclidean circle 22 4+ y?> = 1. He thus conceived of distance metrics
(9.1) [47]:

n 1/p
ds = {Z(dwi)p} (9.1)

=1

With the Euclidean distance for p = 2, this forms a bridge between
classical Euclidean geometry and Riemannian geometry (with a
“quadratic” distance form based on Pythagoras) on the one hand, and
Finsler geometry (“without the quadratic restriction”) and metric spaces
(“with the m-th root metric”) on the other [30]. In the infinitesimal form
(9.1) the simplest so-called Riemann-Finsler geometries are defined [47].
These also find applications beyond geometry. For example, in the early
1990s P.L. Antonelli proposed a Lamé metric in ecology [2]:

ds = e?@)|(dzy)" + (dwy)"] " (9.2)

Equation (9.1) can account for any number of dimensions, for example,
defining Minkowski distances in L,, spaces [83]:

lzll, = (Joy [P + g lP + - + 2, [P) /7 (9-3)
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These types of equations are systematically discussed for the first time
in a booklet Examen des Différentes Méthodes Employées pour Résoudre
les Problémes de Géométrie, published in 1818 by Gabriel Lamé [66]:

" +y" = R", " +yt =1 (9.4)

These equations describe the so-called one-parameter Lamé curves
(Figure 19). Since a circle is defined in a plane by a total of three
numbers (the coordinates of its center and its radius), the totality of
all circles in the plane is a 3-dimensional manifold. The totality of all
ellipses in the plane is a 5-dimensional manifold with the major and
minor axes and orientation of the ellipses [61].

However, all Lamé curves defined by (9.4), which includes all circles, all
squares (the inscribed squares for n = 1 and the circumscribing squares
for n — 00), all astroids (for n = 2/3), as well as all supercircles for any
n > 0 (Equation 9.5a), still constitute only a 4-dimensional manifold, or
a b-dimensional manifold for superellipses (Equation 9.5b). Gielis curves
are a relevant extension of Lamé curves adding a few more parameters.
These curves and transformations provide for a unified description of
natural shapes [47]. In Part IV many examples are shown.

Abb. 5.

Figure 19. Left: Lamé curves for odd and even exponent values [53].
Right: supercircles, also for n < 2.
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9.2 Lamé Curves and Superellipses

In a Cartesian (z,y) system, Equation (9.4) (with n a positive integer
which Lamé assumed > 1) defines the so-called Lamé curves with base
radius R. For even n, the curve (9.4) is a closed curve without real
double and inflection points and with the four symmetry axes x = 0,
y = 0, ¢ = +y. For odd n, it is a single curve without real double
point, with the two inflection points (1;0) and (0;1), the symmetry
axis ¢ = y and the asymptote z = —y (Figure 19) [53]. Supercircles
or superellipses, both a subset of Lamé curves and a generalization of
the circle, are based on Equations (9.5a) and (9.5b) with n a positive
integer and using absolute values to ensure that shapes are closed.

| + [y|* = R" (9.5a)
FIRE o

In fact, many problems of analytic geometry that have become part of
modern geometric techniques and textbooks were first solved by Gabriel
Lamé. Here we find the first mention of the equation of a plane in the
form £ + ¢ + %2 = 1. Lamé’s intention was to open geometry to the
study of crystals, but it was only around 1993 that his equation was
also applied to model square bamboos (Figure 20 left).

\

P

= 4

Figure 20. Left: superelliptical section of a square bamboo. Center:
optimal solution according to Piet Hein. Right: Gabriel Lamé [41].
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Gabriel Lamé (1795-1870) attended the Ecole Polytechnique in Paris
from 1813 to 1818 and graduated from the School of Mines in 1820.
Over the next decade, from 1820 to 1831, Lamé worked in Saint-
Petersburg responsible for railways and bridges [51]. After returning
to Paris, Lamé became Professor of Physics at the Ecole Polytechnique.
Lamé’s mathematical discoveries are closely linked to his research on the
theory of elasticity. He is considered a father of mathematical physics
with the introduction of the parameters (invariants) of a scalar field of
first and second kind [41].

OF\> [OF\> [OF\*
A11“\/ (5:) *(a—ﬂ +(32) (9.6a)
82F+82F+82F
ox?  Oy? 022

o 1w 1o
~9p2 pdp p?O0?

A F = (9.6b)

Au (9.6¢)

A F and Awu are the Laplacian, expressed in Cartesian and
polar coordinates respectively. The curvilinear coordinates and the
differential parameters introduced by Lamé inspired the Italian school
of differential geometry with Ricci, Levi-Civita and Beltrami. Gabriel
Lamé should not only be considered as one of the founders of differential
geometry, but also of Riemannian geometry in the opinion of Elie
Cartan (1869-1951) who was a leading geometer of the 20th century
[55]. He was the first to apply curvilinear coordinates in space using an
orthogonal system, giving the length of an element as:

ds* = H*dp® + Hidp? + H3dp3

He was naturally led to Fermat’s Last Theorem since this is exactly
Equation (9.5a) and he proved the case for n = 7. The recurrence
formula that gives rise to Fibonacci numbers was used by Lamé to
develop the Euclidean algorithm, to determine the greatest common
divisor of two integers [69], and is still in use today. Gaston Darboux
spoke of the immortal works of Gabriel Lamé and Gauss called him
the best French mathematician of his time. On the Eiffel Tower, the



9.3 Trigonometry of Supercircles and a Generalization of ™ o7

names of Fourier, Carnot and Lamé are very close together, all on the
Bourdonnais side of the Tower.

Due to the work of the Danish mathematician and inventor Piet
Hein, Lamé curves became very popular in the 1960s, in objets d’art,
furniture, pottery, fabric patterns, etc. But his major achievement to
date is a sunken oval shopping plaza, promenade and pool in the center
of Stockholm. For Piet Hein the superellipse was an iconic solution
between a round and a square worldview: “Man is the animal that
draws lines, which he himself then stumbles over. In the whole pattern of
civilization there have been two tendencies, one toward straight lines and
rectangular patterns and one toward circular lines. There are reasons,
mechanical and psychological, for both tendencies. Things made with
straight lines fit well together and save space. And we can move easily
- physically or mentally - around things made with round lines. But
we are in a straitjacket, having to accept one or the other, when often
some intermediate form would be better. To draw something freehand
- such as the patchwork traffic circle they tried in Stockholm - will not
do. It isn’t fized, it isn’t definite like a circle or square. You don’t know
what it is. It is not esthetically satisfying. The superellipse solved the
problem. It is neither round nor rectangular, but in between. Yet it
s fized, it is definite - it has a unity. The superellipse has the same
beautiful unity as the circle and ellipse but is less obvious and less plain.
The superellipse frees us from the straitjacket of simple curves such as
lines and planes.” [42]

9.3 Trigonometry of Supercircles and a
Generalization of 7

The sector of area bounded by the curve between the positive x-axis
and the driving ray from the zero point to the point of the curve (z,y)
(Figure 21) is denoted by (1/2)v, because in the case of n = 2 of the
circle it is half the central angle of the sector. Its double value is [53]:

Yy 1 zy
V= / xdy + / ydx = / (xdy — ydx) (9.7)
0 T (z=1,y=0)
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p-rho

Abb, 6.

Figure 21. Left: sector of superellipse [53]. Right: trigonometric
functions on a supercircle.

Depending on whether the expression is of y in x, or of z in y according
to (9.5b), the first or the second of the following integrals is obtained:

1
d Y d
VZ/—xnl or VZ/—ynl (9.8)
z (L—am)w o (L—ym) =

These integrals are denoted by arccos,(z) and arcsin,(y) and their
inverse functions by cos,, v and sin,, v, thus:

1
d
v = arccos,, () = / (—xn“ & = CoS,, V (9.9a)

1 —an) =
y
d
v = arcsin, (x) = / —yn_l, y = sin,, v (9.9b)
o (I—ym) =

These integrals pass into the functions arccos(x) and arcsin(y) for n = 2.
The functions tan,, v and cotan,,v are defined by:
sin,, v Cos,, V

tan, v = , cotan, v = —
cos,, V sin,, v

(9.10)

This leads to the natural generalization in the system © = y?, y = —xP,
of the differential equation system & = y, § = —x. Combining (9.4)
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right (the unit circle) and (9.9a)-(9.9b) it follows that [53]:

dCIJ n—1 dy n—1

S =—(1=—z") " =—y ! ZZ — (1 =y = ! 9.11
dv ( 4 ) Y C dy ( Yy ) X ( )
These are the differential equations for the functions sin,, v and cos,, v,

namely:

7, C0%n v=—sin""'v, d—sm v=rcost 1y (9.12)
v v
Furthermore, it follows according to (9.12):

d2 .. n—2

27 SOV = —(n—1)cos? tusin, “v

- (9.13)

ﬁsm v=—(m—1)sin"" ' vecos" 2v

v

Hence the functions cos, v and sin, v both obey the differential
equation:

"+ (n—1)s"1(1—s")"2 =0 (9.14)
or more generally, the differential equation:

d28 2.n—1 n\n=2

s Tats (@™ —s")" =0 (9.15)
For each supercircle one can define the perimeter as 27,,. To determine
the half-perimeter m,, we can use the integral value [53]:

1
7Tn=2/ LH (9.16)
o (1—1t7) =

which denotes the quadruple of the area sector between the positive
x-axis and the positive y-axis. For even n it is the area enclosed by the
whole curve, which yields for the case n = 2 the number 7, = 7 of
the circle. The calculation of 7, can be traced back to the tabulated
factorial [51]. Namely:

, ()= 017
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3

7Tn
3.142
3.533
3.708
3.801
3.855
3.890
3.914
3.931
3.943

4.000

= © 00 O ULix Wi

g S

Table 1. See [51].

One finds the values shown in Table 1 and, according to the geometric
meaning, one supposes the limit 7. = 4. To confirm this, one introduces
the Gamma function which gives:

T =2 lim m;—%r(ﬁ) = 20'(1) lim I,F(g;)) (9.18)
T@TE+d) CT@  2E
P@0) = =i 7 and limee s = YO 2

indeed m = 4.

Unit supercircles thus have dedicated trigonometric functions [42, 53,
67] and a dedicated value of m,,, defined as the half-perimeter of the
super- (or sub-)circle with exponent n (Figure 21 and Table 1) [67].

(cos,,(9),sin, () = { ljd:n ;Jl?ég; -:a";l (9.19)

For n = 2 the functions cos,, () = cos(?¥) and sin,,(v) = sin(?), and
additionally tan, () = tan(1J). This gives the generalized Pythagorean
theorem:

(cos,, (V)" + (sin, (V)" =1 (9.20)
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9.4 From Superellipses to
Gielis Transformations

Using p = Rcos(¥) and p = Rsin(¥) and using different exponents
Ny, Ny, Mg gives [7, 40, 92]:

R
my/[ cos(9)["2 + [ sin()["s

p(¥;ng,ng,ng) = (9.21)

And for the superellipse with semi-major and semi-minor axes A, B:

1
1y /1% cos(9) 2 + | sin(9) |2

The restriction to the Cartesian coordinate system is solved by adding

m.
a symmetry parameter 7

p(ﬁ;A7an17n27n3) = (922)

1
my /1% cos(29)[m2 + | 4 sin(209) s

p(ﬁ7Aa an17n27n3) = (923)

Examples are shown in Figure 22 (a) to (f) [40]. More generally,
Equation (9.23) can be a transformation of any planar function f(1J):

f(9)

p<197 Aa B7 nl? n27 713) =
my /1% cos(0) | + | sin(Z0) [

(9.24)

Examples of transformations of spirals and trigonometric functions are
shown in Figure 22 (g) to (i) and Figure 22 (j) to (1) respectively; see
also [46, 56, 90].

The symmetry parameter m can be integer, rational or irrational
(Figure 23). Rational values of m generate polygrams. Regular m-
polygons are defined as [14]:

1
p(¥) = lim

T —00 [

1
|COS<%19>| (1-ny 0g, COS m) + ‘Sln(%ﬂ” (1-n4 08, COS m) 1

(9.25)
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Figure 22. (a)-(d): cross sections of plant stems. (e)-(f): starfish.
(g)-(i): transformations of logarithmic (g+h) and Archimedean (i)
spirals. (j)-(1): transformations of cosines, as flowers or in wave view [40].

O
@

Figure 23. Top row: self-intersecting polygons for m = g, %, %. Bottom
row: regular polygons for m = 4,5, 6.
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Examples are shown in Figure 23 bottom row. Approximations to
regular polygons and polygrams are obtained by defining regular Gielis
polygons [72]:

2

m ng .om ngY ni . m
Grng gy = {’cos(zﬂ) + ’sm(zﬁ) } with 1y 3= T
(9.26)
For m > 5, the deviations of G,, ,,__, from true regular polygons are

less than 1%, monotonically decreasing for increasing m [72].

_ 1
ns} ny

m . |"2

Grnng giny = {’cos(zﬁ)

Using Equation (9.23) as equality:

m

+ ‘sin(zﬁ)

1
\/|Acos |”2+|—s1n(4 9|

defines the curve as a boundary of a disk.

The inequality:
1

<
\/]A cos( )| + |5 sin( ) |"s

defines boundary and disk and the inequality p(¥) > defines all
space outside this domain. Using ranges one can define annuli as well
(Figure 24).

p(V)

Figure 24. Annuli with same or different outside and inside boundaries.
On the right the outer boundary is a regular pentagon. [14]
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9.5 Generalizations

R. Chacon proposed the following equation [25]:

_ 1
p(¥) = {|COS(‘I)LH79)’ * o [sin(Py 19| 3} " (9.27)

where ®;; and W ; are suitable amplitudes of Jacobi elliptic functions.
The motivation of this choice is because the solution of many nonlinear
physical models are expressed in terms of such functions [25]. Dealing
with modeling of natural shapes this selection appears quite restrictive,
since the non-linearity is restricted by the use of these particular
functions. This leads to the following generalization [48]:

ny

p(0) = c(9) || cos(—1=) +‘1Sm(m2{f(ﬁ>)

ng _711
2
L } (9.28)

‘ 1 my f1(V)

Here ¥ € [—m,7]; fi, fy and ¢(¥) are continuous functions; mq, ms,
A, B, ny 5 5 are real numbers; and A, B, n; are not zero. Division by 4
in the preceding formula is unnecessary of course, since the same results
can be simply obtained by changing the values m; and m,. Actually,
this division is only assumed in order to preserve the original form of the
Gielis Superformula and the special case of Lamé curves for m = 4. It is
then possible to impose conditions, such as conditions for functions to
be increasing f(—n) = —m, f(w) = m, closed f(—m) = f(7), or to pass
through the origin [48]. Some further examples are shown in Figure 25.

9.6 Supercircles and Superparabolas

The structural form of the above equations is both Pythagorean-
compact and topologically simple. The basic structure is [41]:

1
9) =
pLY) “y/|cos(::)| & | sin(::) [}

(9.29a)

or
1

9) =

(9.29b)
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and the variables and exponents (::, - -, ") can either be numbers
or functions for evolution along a time or space axis or both. When all
exponents (---, !, ) = 2, Equation (9.29a) describes the circle, hence the
name Pythagorean-compact. If we wish to describe the complexity of
an object, it is not only the degree, but also the number of monomials
in the polynomials, which describe the curve or object. In the case
of Lamé curves, irrespective of the degree, the number of monomials
is one in each variable. This is precisely the case for Lamé-Gielis
curves (including those in Figure 25): not only are they Pythagorean-
compact, but also topologically simple [41]. Addition of monomials =",
y™ results in Lamé curves, but the operation multiplication or division
can also be used. Allometric laws ™ = ky" result from multiplication or
division of the monomials, but geometrically these are superparabolas
(or superhyperbolas) (Table 2).

Figure 25. Examples of generalized Gielis transformations [48].
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Variables Planar curves Types Special means
2 g Supercircles & [ameé curves Arithmetic mean
Y Superellipses 24 (for n =1)
Square of geometric
Superparabolas &
n . m .
x" -y Superhyperbolas Power laws mean /T -y

(form=m=1)

Table 2. Lamé curves and power laws as generalizations of conic
sections [46].

In the same way as supercircles are generalizations of circles, these
power relations are superparabolas which are generalizations of the
classic parabola y = 2. In Figure 26 left, superparabolas y = z™/™
are shown in the interval [0; 1] and the exponents range from n = 1/2
to n = 2 with steps of 1/5. The cases for n > 1 and n < 1 have y = z
with n = 1 as the symmetry axis (the bisectrix). The classic parabola is
a machine that turns a rectangle with area g - 1 into a square with the
same area and side x, which is the geometric mean. In the same way,
a superparabola y = /™ turns a beam with an n-volume into a cube
with an m-volume (for n < m) [41].

-
L 50,000 ® Pluto
— Neptune
<D< - 10,000 Uranus
o
x
S - 1,000 Saturn
p=3
©
£ 100 Jupiter
£
g L 10 ‘\r\Thestraightlineexpresses
kS R Kepler's Law of Periods
g Mars
S k1 o Earth
° Venus 1y 100 1,000 10,000
® Mercury ) | " | .

Square of orbital period (yrz)

Figure 26. Left: sub- and superparabolas in the interval [0; 1]. Right:
Kepler’s Law [41].
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The trigonometry of the parabola yields interesting insights. The value
of the half-perimeter 7,,, is a rational number and is directly related
to Archimedes’ Quadrature of the Parabola. Moreover, the values of
the associated sec,,, and cos,,,. at 45° give the Golden Ratio ¢ and
its inverse 1/¢ respectively [32, 33, 91]. The generalization of these
trigonometric functions to super- and subparabola, analogous to the

trigonometry on supercircles, needs to be developed.

In physics, biology and economy, power laws are found everywhere, from
the size of cities to the power noise in time series. The Cobb-Douglas
production function V = yK°L'? is one example from economics, with
the output of a Process V defined by Capital K and Labor L, which
can be substituted to a certain extent depending on the substitution
parameter . This is equivalent to an expression like z = 2™ - y™. In the
case of Cobb-Douglas n = 1—m. Actually, the Cobb-Douglas model is a
limiting case of the CES (constant elasticity of substitution) production
models (in the case of p = 0 elasticity reduces to unity) [3]:

V =y 6K+ (1—8)L°] 7 (9.30)

with K = capital, L = labor, v an efficiency parameter, p a substitution
parameter (transform of elasticity of substitution) and § a distribution
parameter (6 and 1—4§ make this into a weighted mean). The generalized
form of CES production functions with an arbitrary number of inputs
is [29]:

F(xy,xq9,...,z,) =A (Zafxf) with a;,7,A,p#0and p <1
=1
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