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Chapter 5. Applications

5.1 The Dirichlet Problem for the Laplace
Equation in a Circular Domain

Consider in the plane 𝑥, 𝑦 the circle 𝐶, centered at the origin 𝑂 and
with radius 𝑟. We want to construct a function harmonic regular in
𝐶, which takes on assigned values on the boundary 𝜕𝐶. It is therefore
necessary to solve the problem:

⎧{
⎨{⎩

Δ2𝑢 ≡ 𝜕2𝑢
𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2 = 0 (𝑥, 𝑦) ∈ 𝐶 − 𝜕𝐶

𝑢 = 𝑓(𝑥, 𝑦) on 𝜕𝐶
(5.1)

It is usual to introduce the polar coordinates (𝑥 = 𝜌 cos𝜑, 𝑦 = 𝜌 sin𝜑)
and to translate the problem (5.1) into the equivalent one (with a
simplified notation):

⎧{
⎨{⎩

𝜕2𝑢
𝜕𝜌2 + 1

𝜌
𝜕𝑢
𝜕𝜌 + 1

𝜌2
𝜕2𝑢
𝜕𝜑2 = 0 𝜌 ∈ [0, 𝑟), 𝜑 ∈ [0, 2𝜋]

𝑢(𝑟, 𝜑) = 𝑓(𝜑) ∀𝜑 ∈ [0, 2𝜋]
(5.2)

with the regularity condition for the solution 𝑢 also for 𝜌 = 0 and with
𝑓(0) = 𝑓(2𝜋). Assuming that there exists a solution 𝑢(𝜌, 𝜑) of this
problem, for any fixed 𝜌 < 𝑟 as a function of 𝜑 it can certainly be
expanded in a Fourier series. Therefore, we have:

𝑢(𝜌, 𝜑) = 1
2 𝑎0(𝜌) +

∞
∑
𝑘=1

(𝑎𝑘(𝜌) cos 𝑘𝜑 + 𝑏𝑘(𝜌) sin 𝑘𝜑) (5.3)

with the coefficients 𝑎𝑘(𝜌) and 𝑏𝑘(𝜌) respectively given by:

𝑎𝑘(𝜌) = 1
𝜋 ∫

2𝜋

0
𝑢(𝜌, 𝜉) cos 𝑘𝜉𝑑𝜉, 𝑏𝑘(𝜌) = 1

𝜋 ∫
2𝜋

0
𝑢(𝜌, 𝜉) sin 𝑘𝜉𝑑𝜉 (5.4)
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For the determination of these coefficients there are several methods:
separation of variables, transforms or computation of coefficients by
using identities of trigonometric series. Here we will operate in a “formal”
way which can be verified. Assuming ∀𝜌 < 𝑟 that we can derive twice
by series, substituting (5.3) into (5.2) we get:

1
2 [𝑎″

0(𝜌) + 1
𝜌 𝑎′

0(𝜌)] +
∞

∑
𝑘=1

[𝑎″
𝑘(𝜌) + 1

𝜌 𝑎′
𝑘(𝜌) − 𝑘2

𝜌2 𝑎𝑘(𝜌)] cos 𝑘𝜑

+ [𝑏″
𝑘(𝜌) + 1

𝜌 𝑏′
𝑘(𝜌) − 𝑘2

𝜌2 𝑏𝑘(𝜌)] sin 𝑘𝜑 = 0
(5.5)

a relation that must be verified identically ∀𝜌 < 𝑟, ∀𝜑 ∈ [0, 2𝜋]. For
this to happen, the coefficients of the Fourier series (5.5) must vanish
and therefore we find:

⎧{{{{
⎨{{{{⎩

𝑎″
0(𝜌) + 1

𝜌 𝑎′
0(𝜌) = 0

𝑎″
𝑘(𝜌) + 1

𝜌 𝑎′
𝑘(𝜌) − 𝑘2

𝜌2 𝑎𝑘(𝜌) = 0 (𝑘 = 1, 2, … )

𝑏″
𝑘(𝜌) + 1

𝜌 𝑏′
𝑘(𝜌) − 𝑘2

𝜌2 𝑏𝑘(𝜌) = 0 (𝑘 = 1, 2, … )

These are all equations of the Euler type, with the peculiarity of
claiming regular solutions even for 𝜌 = 0. From:

⎧{{
⎨{{⎩

𝑎0(𝜌) = 𝐴0 + 𝐴∗
0 log 𝜌

𝑎𝑘(𝜌) = 𝐴𝑘𝜌𝑘 + 𝐴∗
𝑘𝜌−𝑘 (𝑘 = 1, 2, … )

𝑏𝑘(𝜌) = 𝐵𝑘𝜌𝑘 + 𝐵∗
𝑘𝜌−𝑘 (𝑘 = 1, 2, … )

it follows that 𝐴∗
0 = 𝐴∗

𝑘 = 𝐵∗
𝑘 = 0, 𝑘 = 1, 2, … ; and lastly that:

𝑎0(𝜌) = 𝐴0, 𝑎𝑘(𝜌) = 𝐴𝑘𝜌𝑘, 𝑏𝑘(𝜌) = 𝐵𝑘𝜌𝑘 (𝑘 = 1, 2, … )

From Equation (5.4) for 𝜌 = 𝑟 (as a consequence of the claimed
regularity) it follows that:
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𝐴0 = 1
𝜋 ∫

2𝜋

0
𝑓(𝜉)𝑑𝜉

𝐴𝑘 = 𝑎𝑘(𝑟)𝑟−𝑘 = 1
𝜋𝑟𝑘 ∫

2𝜋

0
𝑓(𝜉) cos 𝑘𝜉𝑑𝜉 (𝑘 = 1, 2, … )

𝐵𝑘 = 𝑏𝑘(𝑟)𝑟−𝑘 = 1
𝜋𝑟𝑘 ∫

2𝜋

0
𝑓(𝜉) sin 𝑘𝜉𝑑𝜉 (𝑘 = 1, 2, … )

and then:

𝑎0(𝜌) = 1
𝜋 ∫

2𝜋

0
𝑓(𝜉)𝑑𝜉

𝑎𝑘(𝜌) = 1
𝜋 (𝜌

𝑟 )
𝑘

∫
2𝜋

0
𝑓(𝜉) cos 𝑘𝜉𝑑𝜉 (𝑘 = 1, 2, … )

𝑏𝑘(𝜌) = 1
𝜋 (𝜌

𝑟 )
𝑘

∫
2𝜋

0
𝑓(𝜉) sin 𝑘𝜉𝑑𝜉 (𝑘 = 1, 2, … )

We thus formally arrive at the expression of the solution:

𝑢(𝜌, 𝜑) = 1
2𝜋 ∫

2𝜋

0
𝑓(𝜉)𝑑𝜉

+ 1
𝜋

∞
∑
𝑘=1

(𝜌
𝑟 )

𝑘
[∫

2𝜋

0
𝑓(𝜉) cos 𝑘𝜉𝑑𝜉 cos 𝑘𝜑

+ ∫
2𝜋

0
𝑓(𝜉) sin 𝑘𝜉𝑑𝜉 sin 𝑘𝜑]

= 1
2𝜋 ∫

2𝜋

0
𝑓(𝜉)𝑑𝜉 + 1

𝜋
∞

∑
𝑘=1

(𝜌
𝑟 )

𝑘
∫

2𝜋

0
𝑓(𝜉) cos 𝑘(𝜑 − 𝜉)𝑑𝜉

The appropriate checks can be carried out on this expression.
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5.2 The Heat Problem
Let us start with some definitions necessary for the understanding of
what follows.

Gamma and Bessel functions

The Gamma function is the extension of the factorial to non-integer
values of the number 𝑛 ∈ ℕ+. For 𝑥 ≠ −𝑛 it is defined as:

Γ(𝑥) ∶= ∫
+∞

0
𝑒−𝑡 𝑡𝑥−1𝑑𝑡 (𝑥 > 0) (5.6)

In fact, we have:

Γ(1) ∶= 1 , Γ(𝑥 + 1) ∶= 𝑥Γ(𝑥) ⟹ Γ(𝑛 + 1) = 𝑛!

The Bessel functions of the first kind 𝐽𝑛, together with those of the
second kind 𝑌𝑛, are widely used in the solutions of mathematical physics
problems. They can be defined as solutions of the differential equation:

𝑥2𝑦″ + 𝑥𝑦′ + (𝑥2 − 𝑛2) 𝑦 = 0 (5.7)

We get the explicit expression of 𝐽𝑛 in the form:

𝐽𝑛(𝑥) =
∞

∑
𝑘=0

(−1)𝑘 (𝑥/2)2𝑘+𝑛

𝑘! (𝑘 + 𝑛)! (5.8)

which extends to the case of the real values 𝑝 of the index by replacing
the factorial with the Gamma function:

𝐽𝑝(𝑥) =
∞

∑
𝑘=0

(−1)𝑘 (𝑥/2)2𝑘+𝑝

𝑘! Γ(𝑘 + 𝑝 + 1)

One of the well known applications of the Bessel functions [1] is
related to the separation of variables in the partial differential equation
representing the heat equation for a circular plate.

In fact, denoting by 𝐵 a circular domain of radius 𝑟 = 1 centered
at the origin, by 𝜕𝐵 the relevant boundary, by 𝜅 a constant representing
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the known diffusivity and by 𝑓(𝑥, 𝑦) ∈ 𝐶0(𝐵) the initial temperature,
the solution:

𝑢(𝑥, 𝑦, 𝑡) ∈ [𝐶2( ∘
𝐵) × 𝐶1(R+)] ∩ 𝐶0[𝐵̄ ×R+]

of the differential problem:

⎧{
⎨{⎩

𝜕𝑢
𝜕𝑡 = 𝜅 (𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢
𝜕𝑦2 ) in

∘
𝐵

𝑢(𝑥, 𝑦, 𝑡)|(𝑥,𝑦)∈𝜕𝐵 = 0 𝑢 (𝑥, 𝑦, 0) = 𝑓 (𝑥, 𝑦)
(5.9)

putting:

𝑈(𝜌, 𝜃, 𝑡) = 𝑢(𝜌 cos 𝜃, 𝜌 sin 𝜃, 𝑡) , 𝐹 (𝜌, 𝜃) = 𝑓(𝜌 cos 𝜃, 𝜌 sin 𝜃) (5.10)

can be represented by the Fourier expansion in terms of exponential,
circular and Bessel functions:

𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝜌, 𝜃, 𝑡)

=
∞

∑
𝑚=0

∞
∑
𝑘=1

(𝐴𝑚,𝑘 cos𝑚𝜃 + 𝐵𝑚,𝑘 sin𝑚𝜃)𝐽𝑚 (𝑗(𝑚)
𝑘 𝜌)

× exp [− (𝑗(𝑚)
𝑘 )

2
𝜅𝑡]

(5.11)

where the coefficients 𝐴𝑚,𝑘, 𝐵𝑚,𝑘 are given by:

⎧{{{{{
⎨{{{{{⎩

𝐴0,𝑘 = 1
𝜋 [𝐽1(𝑗(0)

𝑘 )]
2 ∫

1

0
𝜁 [∫

2𝜋

0
𝐹(𝜁, 𝜏) 𝑑𝜏] 𝐽0(𝑗(0)

𝑘 𝜁) 𝑑𝜁

𝐴𝑚,𝑘 = 2
𝜋 [𝐽𝑚+1(𝑗(𝑚)

𝑘 )]
2 ∫

1

0
𝜁 [∫

2𝜋

0
𝐹(𝜁, 𝜏) cos𝑚𝜏 𝑑𝜏] 𝐽𝑚(𝑗(𝑚)

𝑘 𝜁) 𝑑𝜁

𝐵𝑚,𝑘 = 2
𝜋 [𝐽𝑚+1(𝑗(𝑚)

𝑘 )]
2 ∫

1

0
𝜁 [∫

2𝜋

0
𝐹(𝜁, 𝜏) sin𝑚𝜏 𝑑𝜏] 𝐽𝑚(𝑗(𝑚)

𝑘 𝜁) 𝑑𝜁

(5.12)

and 𝑗(𝑚)
𝑘 denote the zeros of the Bessel function 𝐽𝑚.
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5.3 The Wave Problem
Another well known application of the Bessel functions [1] is related
to the separation of variables in the partial differential equation
representing the free vibrations of a circular membrane (drumhead).
Denoting by 𝐵 a circular domain of radius 𝑟 = 1 centered at the
origin, by 𝜕𝐵 the relevant boundary, by 𝑎 = √𝜏/𝜇 a suitable constant
(where 𝜏 denotes the tension and 𝜇 the density) and by 𝑓(𝑥, 𝑦) ∈ 𝐶0(𝐵)
the initial displacement, the solution 𝑢 ∈ 𝐶2(𝐵 − 𝜕𝐵) ∩ 𝐶0(𝐵̄) of the
differential problem:

⎧{
⎨{⎩

𝜕2𝑢
𝜕𝑡2 = 𝑎2 (𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢
𝜕𝑦2 ) in

∘
𝐵

𝑢(𝑥, 𝑦, 𝑡)|(𝑥,𝑦)∈𝜕𝐵 = 0 𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦) , 𝑢𝑡(𝑥, 𝑦, 0) = 0
(5.13)

putting:

𝑈(𝜌, 𝜃) = 𝑢(𝜌 cos 𝜃, 𝜌 sin 𝜃) , 𝐹 (𝜌, 𝜃) = 𝑓(𝜌 cos 𝜃, 𝜌 sin 𝜃) (5.14)

can be represented by the Fourier expansion in terms of Bessel functions:

𝑈(𝜌, 𝜃, 𝑡) =
∞

∑
𝑚=0

∞
∑
𝑘=1

𝐽𝑚 (𝑗(𝑚)
𝑘 𝜌) cos (𝑗(𝑚)

𝑘 𝑎𝑡)

× (𝐴𝑚,𝑘 cos𝑚𝜃 + 𝐵𝑚,𝑘 sin𝑚𝜃) (5.15)

where the coefficients 𝐴𝑚,𝑘, 𝐵𝑚,𝑘 are given by:

𝐴𝑚,𝑘 =

⎧{{{{
⎨{{{{⎩

2
𝜋 [𝐽𝑚+1(𝑗(𝑚)

𝑘 )]
2 ∫

1

0
∫

2𝜋

0
𝜌𝐹(𝜌, 𝜃)𝐽𝑚 (𝑗(𝑚)

𝑘 𝜌) cos𝑚𝜃 𝑑𝜃𝑑𝜌

(𝑚 = 1, 2, … )

1
𝜋 [𝐽1(𝑗(0)

𝑘 )]
2 ∫

1

0
∫

2𝜋

0
𝜌𝐹(𝜌, 𝜃)𝐽0 (𝑗(0)

𝑘 𝜌) 𝑑𝜃𝑑𝜌 (𝑚 = 0)
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𝐵𝑚,𝑘 = 2
𝜋 [𝐽𝑚+1(𝑗(𝑚)

𝑘 )]
2 ∫

1

0
∫

2𝜋

0
𝜌𝐹(𝜌, 𝜃)𝐽𝑚 (𝑗(𝑚)

𝑘 𝜌) sin𝑚𝜃 𝑑𝜃𝑑𝜌

(𝑚 = 1, 2, … ) (5.16)

and 𝑗(𝑚)
𝑘 denote the zeros of the Bessel function 𝐽𝑚.

Moreover, the eigenvalues of a vibrating circular membrane are related
to the zeros of the Bessel functions, since the relevant elementary
frequencies are given by:

𝑓𝑚,𝑘 = 𝑗(𝑚)
𝑘 𝑎
2𝜋 (𝑚 = 0, 1, … ; 𝑘 = 1, 2, … )
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