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Chapter 1. The Pythagorean Theorem
and Its Extensions

The Pythagorean theorem has its roots in the remote past. Early
traces can be found in ancient Indian, Egyptian and Mesopotamian
cultures, as the basis for the construction of the right angle necessary
for the construction of buildings. In reality, the Pythagorean triples
of integers (3,4,5), (6,8,10), (12,16,20), etc. first appeared and only
later with the introduction of irrational numbers, attributed to the
Pythagoreans themselves, its extension was considered, for example,
through Theodore’s spiral.

The historical figure of Pythagoras himself is shrouded in mystery, as
his birth on the Greek island of Samos has sometimes been questioned.
It seems that he came to Magna Graecia and lived in Crotone, where
he allegedly assumed political office and was subsequently killed in
Metaponto during a revolt. None of this is certain. It is the figure of a
philosopher who seems to have had strange metaphysical beliefs, such
as that of metempsychosis, and was sometimes mocked for this reason
(Horace, Satires, II, 6).

In any case, the importance of the theorem is fundamental in
mathematics because it is linked to the concept of orthogonality which
has so much relevance in modern mathematics. The extensions of the
theorem to Euclidean spaces first, and more generally to those of Hilbert
spaces, are recalled in the following as a basis for arriving at the
series expansions of orthogonal functions introduced by Fourier series
theory.

There exist many proofs of the Pythagorean theorem, starting with
the one by Euclid. Here we use probably the most simple one, which
makes use of the binomium square and the comparison of the areas of
two figures, both shown in a geometrical way. No further comments are
necessary.

In Figure 1 binomial square (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 is proven.
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In Figure 2 a geometrical proof of the Pythagorean theorem is shown.
The area of the square of side (𝑎 + 𝑏) is calculated in two ways: in the
left figure as 𝑐2 + 2𝑎𝑏 and in the right figure as 𝑎2 + 𝑏2 + 2𝑎𝑏. Since the
areas are equal it must be 𝑎2 + 𝑏2 = 𝑐2.

Figure 1. The square of a sum.

Figure 2. A geometrical proof.
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1.1 Al-Kashi (Carnot) Theorem
An extension of the Pythagorean theorem known as the Carnot
theorem was actually known by the Persian mathematician al-Kashi
(1380-1429) [8]. It is also called the law of cosines. It results from
applying the Pythagorean theorem, but it is necessary to distinguish
two cases depending on whether the angle 𝛼 = ̂𝐴 is acute or obtuse.

We refer to the case in which 𝛼 is acute, so that | cos𝛼| = cos𝛼. In the
other case, cos𝛼 < 0 but the minus sign in the following equation must
be replaced by a plus sign so that both cases follow using the absolute
value of cos𝛼. Considering Figure 3, we have 𝐴𝐷 = 𝑏 | cos𝛼|, 𝐶𝐷 =
𝑏 sin𝛼, 𝐷𝐵 = 𝑐 − 𝑏 | cos𝛼|, and by applying the Pythagorean theorem
to the triangle 𝐷𝐵𝐶 it follows that:

𝑎2 = (𝑏 sin𝛼)2 + (𝑐 − 𝑏 | cos𝛼|)2

= 𝑏2(sin2 𝛼 + cos2 𝛼) + 𝑐2 − 2 𝑏 𝑐 | cos𝛼|
= 𝑏2 + 𝑐2 − 2 𝑏 𝑐 | cos𝛼|

Figure 3. The case when 𝛼 ∶= ̂𝐴 is acute.

1.2 Vector Space on R; Scalar Product in R2

A vector space V on R is an abelian group, with respect to the sum, of
v elements called vectors [57]. This means that there is an associative
and commutative sum operation. There is a null vector 0 such that
∀v ∈ V,v + 0 = v and for each v there is an opposite −v such that
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v+ (−v) = v− v = 0. Moreover, it is possible to multiply the vectors
by the numbers (called scalars) of R so that ∀u,v ∈ V, ∀𝛼, 𝛽 ∈ R, the
following properties are satisfied:

0v = 0
𝛼(u+ v) = 𝛼u+ 𝛼v
(𝛼 + 𝛽)u = 𝛼u+ 𝛽u

The scalar product in R2 associates with each pair of elements of V
an element (scalar) of R2 so that ∀u,v ∈ V, ∀𝛼, 𝛽 ∈ R, the following
properties hold:

(u,v) = (v,u) Symmetry
(𝛼u+ 𝛽w,v) = 𝛼(u,v) + 𝛽(w,v) Linearity

(u,u) > 0 if u ≠ 0 Positivity

For calculation there are two definitions:

⃗𝑂𝐴 ⋅ ⃗𝑂𝐵 = 1
2 (|𝑂𝐴|2 + |𝑂𝐵|2 − |𝐴𝐵|2)

Putting:

u = ⃗𝑂𝐴 = (𝑢1, 𝑢2), v = ⃗𝑂𝐵 = (𝑣1, 𝑣2)

it also follows that:

(u,v) = 𝑢1𝑣1 + 𝑢2𝑣2

In Figure 4 the geometrical meaning of the scalar product is shown.

Figure 4. Meaning of the scalar product when ⃗𝑂𝐵 is a unit vector.
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Equivalence of the two definitions

Given the vectors u = (𝑢1, 𝑢2), v = (𝑣1, 𝑣2), and denoting by |u| the
length of the vector u, using the Carnot theorem it follows that:

(u,v) = 1
2 (|u|2 + |v|2 − |u− v|2)

and from the Pythagorean theorem that:

(u,v) = 1
2 {𝑢2

1 + 𝑢2
2 + 𝑣2

1 + 𝑣2
2 − [(𝑢1 − 𝑣1)2 + (𝑢2 − 𝑣3)2]}

= 1
2 (2𝑢1𝑣1 + 2𝑢2𝑣2) = 𝑢1𝑣1 + 𝑢2𝑣2

1.3 Extension to R𝑛; Weighted
Scalar Product

The definition of scalar product extends to the case of R𝑛 by setting:

(u,v) = 𝑢1𝑣1 + 𝑢2𝑣2 + ⋯ + 𝑢𝑛𝑣𝑛

The following properties hold:

1. Bessel inequality in R𝑛:

when ℎ < 𝑛 ⇒ 𝑢2
1 + 𝑢2

2 + ⋯ + 𝑢2
ℎ < |𝑢|2

2. Pythagorean theorem in R𝑛:

|𝑢|2 = 𝑢2
1 + 𝑢2

2 + ⋯ + 𝑢2
𝑛

A further extension of the scalar product is obtained by introducing
a weight vector w = (𝑤1, 𝑤2, … , 𝑤𝑛). Therefore, we define the scalar
product with weight 𝑤 by setting:

(u,v)w = 𝑢1𝑣1𝑤1 + 𝑢2𝑣2𝑤2 + ⋯ + 𝑢𝑛𝑣𝑛𝑤𝑛

The notion of linear dependence and independence is of fundamental
importance.
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Definition. The vectors v1,v2, … ,v𝑚 are linearly independent if and
only if the following implication holds:

𝛼1v1 + 𝛼2v2 + ⋯ + 𝛼𝑚v𝑚 = 0 ⇒ 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑚 = 0

Otherwise, they are said to be linearly dependent. The linear
combinations of the linearly independent vectors v1,v2, … ,v𝑚 generate
a linear manifold of dimension 𝑚:

V𝑚 ⊂ V

Definition. The vector space V has dimension 𝑛 if 𝑛 is the maximum
number of linearly independent vectors in it.

Introducing in the vector space V, of dimension 𝑛, the orthonormal
base:

e1 = (1, 0, 0, … , 0), e2 = (0, 1, 0, … , 0), … , e𝑛 = (0, 0, … , 0, 1)

(eℎ, e𝑘) = 𝛿ℎ,𝑘 = {0 𝑖𝑓 ℎ ≠ 𝑘
1 𝑖𝑓 ℎ = 𝑘

Then the vector u writes as:

u = 𝑢1e1 + 𝑢2e2 + ⋯ + 𝑢𝑛e𝑛

and it turns out that the generic component 𝑢𝑘 of the vector u is given
by the scalar product:

𝑢𝑘 = (u, e𝑘)
In fact, we have:

(u, e𝑘) = 𝑢1(e1, e𝑘) + 𝑢2(e2, e𝑘) + ⋯ + 𝑢𝑘(e𝑘, e𝑘) + ⋯ + 𝑢𝑛(e𝑛, e𝑘) = 𝑢𝑘
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