
 

 

 

 
Journal of Automotive Software Engineering 
 
ISSN (Online): 2589-2258                    ISSN (Print): N/A 
 
Journal Home: https://www.athena-publishing.com/journals/jasen 

 
 
Article Title 
 

Using Architectural Runtime Verification for Offline Data 
Analysis 
 
Authors 
 

Lars Stockmann, Sven Laux, Eric Bodden 
 
Corresponding Author 
 

Lars Stockmann – lars.stockmann@hni.uni-paderborn.de 
 
Cite This Article As 
 

L. Stockmann, S. Laux, E. Bodden. Using Architectural Runtime 
Verification for Offline Data Analysis. Journal of Automotive 
Software Engineering, Vol. 2(1), pp. 1–14, 2021. 
 
Link to This Article (DOI) 
 

https://doi.org/10.2991/jase.d.210205.001 
 
Published on Athena Publishing Platform 
 

31 January 2022

https://www.athena-publishing.com/journals/jasen
mailto:lars.stockmann@hni.uni-paderborn.de
https://doi.org/10.2991/jasen.doi.doi.doi


Journal of Automotive Software Engineering
Vol. 2(1), 2021, pp. 1–14

DOI: https://doi.org/10.2991/jase.d.210205.001; ISSN: 2589-2258
https://www.atlantis-press.com/journals/jase/

Using Architectural Runtime Verification for Offline
Data Analysis

Lars Stockmann1,2,*, , Sven Laux2, Eric Bodden1,3,

1Software Engineering Group, Heinz Nixdorf Institute, Paderborn University, Fürstenallee 11, Paderborn, 33102, North Rhine-Westphalia, Germany
2dSPACE GmbH Rathenaustraße 26, Paderborn, 33102, North Rhine-Westphalia, Germany
3Fraunhofer IEM, Zukunftsmeile 1, Paderborn, 33102, North Rhine-Westphalia, Germany

ART I C L E I N FO
Article History

Received 19 Jan 2020
Accepted 14 Jan 2021

Keywords

Architecture
Runtime Verification
Database
AUTOSAR
Cloud

ABSTRACT
Analyzing runtime behavior as part of debugging complex component-based systems used in the vehicle industry is an important
aspect of the integration process. It is a laborious task that involves many manual steps. One reason for this is that, as of today,
the analysis is usually not performed on the architecture level, where the system has initially been designed. Instead, it relies on
source code debugging or visualizing signals and events. With an ever-growing complexity of such systems, it becomes increas-
ingly difficult to find errors that manifest at integration level, i.e., when the components interact with each other in a complex
environment. Architectural Runtime Verification (ARV) is an approach specifically designed for the integrator—a generic way
to analyze system behavior on architecture level using the principles of Runtime Verification. This paper draws on our initial
publication. It provides further details and an evaluation of the ideas using a database hosted in the cloud.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Verification of control devices is an important aspect in many
industries. Especially in the transportation industry, safety require-
ments and a highly distributed development process command
manufacturers and suppliers to perform extensive testing. It there-
fore has been is an integral part of guidelines and standards, such as
the ISO 26262 standard [1]. Figure 1 depicts the V-model of part 6:
Product development at the software level.

The software of such devices is usually developed in a component-
based fashion, where each component is first implemented and
tested individually before being integrated.

The verification of integrated systems is difficult due to both, soft-
ware architectures and hardware setups have become more dis-
tributed and heterogeneous. Methods such as model checking,
which might be applicable to individual components, suffer from
the state-explosion problem and thus cannot be used on integra-
tion level. Also, system specifications are often informally stated [2]
prohibiting formal methods. Thus, the main verification method at
integration level is simulation-based testing.

Whenever a test fails, developers must uncover the actual cause for
the misbehavior. Given the complexity of an integrated system, this
can be difficult. The actual defect is often not found where a viola-
tion or an undesired effect is observed. Furthermore, there can be

*Corresponding author. Email: lars.stockmann@hni.uni-paderborn.de

Figure 1 ISO 26262-6 development process [1].

other components participating in the test (e.g., plant models, other
simulated controllers) that might contribute to the misbehavior [3].

Unfortunately, to our knowledge no publications exist that reveal
how much this problem affects the development process of a
complex integrated system, such as a car or an airplane. Such
information is usually kept confidential. Generally, the domain of
debugging on integration level is not a very common topic in the
literature. There is material available that deals with the debugging
of embedded real-time systems. Examples are the work of Thane
and Sundmark et al., which covers the low-level technical aspects of
accessing the runtime data, e.g., on how to minimize the impact on
the system and achieve deterministic replay [4,5]. Like with many
approaches, they consider a standard debugger to be used for the

https://doi.org/10.2991/jase.d.210205.001\relax 
https://www.atlantis-press.com/journals/jase/
https:/orcid.org/0000-0002-7234-8191
https:/orcid.org/0000-0003-3470-3647
http://creativecommons.org/licenses/by-nc/4.0/


2 L. Stockmann et al. / Journal of Automotive Software Engineering 2(1) 1–14

actual analysis. Also, they focus on the embedded system, whereas
the interplay with other parts/components of the test setup is not in
scope.

Some research in the field of integrated systems debugging has been
conducted in other domains. For example, Østerlie and Wang ana-
lyzed the debugging process in open source software (OSS), more
specifically in Gentoo Linux, using an ethnographic study [6]. Of
course, it differs from how the integration is done in the transporta-
tion industry in that there is no (social) interaction and no collective
sensemaking process with the customer, which plays an important
role according to the study.

Thus, to learn about integration-related errors and bugs, we looked
at some of our (customer) projects and interviewed developers from
different OEMs that had been assigned the role of integrators. The
following three examples should give the reader a broad idea of what
kind of problems one might face on integration level when working
with complex component-based systems.

The first real-life example that had been disclosed to us by a well-
known car manufacturer was an issue with a side mirror that did
not swing in properly (only half-way), when the ignition had been
turned off. The side mirror electronic control unit (ECU) had been
thoroughly tested and the behavior could not be reproduced when
testing it individually. After a thorough investigation it was found
that a complex interaction of several ECUs lead to a premature shut-
down of the responsible side mirror controller so that it could not
finish its task.

Another example was a sporadic spike in a control variable that
represented a continuous signal. It appeared only when the soft-
ware was integrated in the system and was not reproducible when
testing the software individually. What was so confusing about this
error was the fact that the spike did not seem to have an effect on
the control loop and also seemed to appear randomly. Discontinu-
ities like this usually indicate a sudden bit flip or a sensor prob-
lem, both of which do happen only very rarely. So this was unlikely
the issue here. It took several ”veteran” engineers a couple of weeks
to find the actual cause. In this case, it was an unrelated software
component that just happened to be integrated on the same micro-
controller (something quite common in AUTOSAR architectures).
The other software component defined a variable that coinciden-
tally had the same name (compile symbol) as the one that exhibited
the strange behavior. During the linking of the final software, they
were both assigned the same memory regions. This resulted in one
variable sporadically overwriting the other at runtime.

The third example originates from a past project, which was about
the evaluation of a common tool-chain for designing AUTOSAR
controllers for electric vehicles (cf. Ref. [7]). The control software
would slowly start to oscillate under certain conditions, but only
when the controller had been integrated in the architecture. The
unit tests did not show this behavior. Although the system was
comparably simple, it took us considerable time to find the culprit,
which in this case was a sub-optimal scheduling sequence of tasks
that resulted in dead time added to the control loop.

Such defects can only be uncovered when the system’s behavior as
a whole is taken into account. It requires knowledge of the system’s
architecture as well as expertise and experience in the debugging of
such systems. A common systematic approach is to induce hypothe-
ses about a possible cause from the observed behavior and then

continuously refine it by testing predictions that result in further
observations. This is commonly referred to as the scientific method
in debugging [8]. It has been proposed as early as the nineties by
Akari et al. They stated that a debugging tool should provide a
“facility of theorem proving or at least proof-checking to help pro-
grammers verify their hypotheses about programs and errors” [9].
It is our understanding that as of today there is no such thing in the
area of debugging at the integration level. The whole part of verify-
ing/refuting hypotheses or, more precisely, the behavioral predic-
tions inferred thereof, is still a manual process. It mainly involves
signal plotting and source code analysis (the classical step-by-step
debugging). However, a developer must have a deep understand-
ing of the integrated system to find a good spot for a break point.
Even if the source code is available, which is not always the case due
to IP protection, it may originate from different sources or might
even be generated. Recent studies by Tiarks and Röhm found that
understanding somebody else’s code is one of the main problems
in debugging [10]. In case of a real-time simulation, source code
debugging is often not even an option. Also, it is not feasible to
plot and analyze every individual signal. Selecting a new signal that
has not been recorded previously or starting at a different break
point requires to rerun the test. This makes the whole process time-
consuming and tedious.

As a result, we are working on Architectural Runtime Verification
(ARV)—a new approach that allows the formal analysis of the run-
time behavior of an integrated system on architecture level. Like
Thane and Sundmark, it assumes that data is recorded. This means
that a user can verify/refute hypotheses after the testing is over to
find the root cause for its failure. However, ARV goes even a step
further by allowing to analyze multiple test runs at the same time. It
boroughs ideas of a common technique used to verify the behavior
of (software) components at runtime, which is called Runtime Ver-
ification (RV). The goal is to give a better understanding of the sys-
tem behavior as a whole. Also, ARV could serve as a starting point
for the traditional approaches, e.g., to decide which signals might
be worth plotting or to find a good spot to set a break point in the
code, which according to Tjarks and Röhm would already be an
improvement [10].

This paper is an extended version of our initial work [11]. It extends
on the original contributions:

i a requirements analysis for a framework that allows RV to be
applied on architecture level (Section 4)

ii a domain-independent model that augments the structure of
a generic architecture with runtime information (Sections 5.1
and 5.2)

iii a way to formally state assumptions1 about the temporal
behavior (Section 5.3)

iv a way to verify the assumptions using the RV monitor
paradigm applied to a database, without having to query every
single event (Section 5.4)

with additional findings based on further evaluation and gives a
more detailed outlook.

1We have changed the term ”hypothesis” from the initial publication to
”assumption,” because it has lead to some confusion



L. Stockmann et al. / Journal of Automotive Software Engineering 2(1) 1–14 3

The paper is further structured as follows: The next section explains
the main concepts of RV. Section 3 introduces an illustrating run-
ning example. After that, Section 4 presents a requirements analysis
that forms the basis for the actual approach presented in Section 5.
Sections 6 and 7 describe how we evaluated ARV using the running
ex ample and Section 8 presents related work. The paper concludes
with a brief outlook in Section 9.

2. ABOUT RV AND LINEAR
TEMPORAL LOGIC

The information on the system behavior that is available at integra-
tion level is often limited, because components may be delivered in
binary form. From an integrators’ perspective, they are nothing but
black boxes with hidden internals [12]. Hence, a complete model of
the possible states rarely exists. Such black-box systems cannot be
verified using formal verification techniques, such as Model Check-
ing, but instead must be executed to test their behavior. Thereby,
also the environment in which the components are finally inte-
grated is considered for which otherwise again only insufficient
information might be available [13]. RV is a technique that focuses
on a concrete execution of a system rather than checking its model
formally. Falcone et al. define RV as a “dynamic analysis method
aiming at checking whether a run of the system under scrutiny sat-
isfies a given correctness property” [14].

Basic concepts of RV are presented in the surveys by Leucker et
Schallhart [13] and Falcone et al. [14] One central concept is that
RV only requires formal properties as input for the verification.
A model of the component’s internal behavior is not required.
This works by first automatically translating a given property into
a monitor (monitor synthesis), which then observes the system’s
execution in a second step called monitoring. Here, the monitor
consumes events produced by the system and outputs a verdict
reflecting the satisfaction of the property.

In RV it is common that the monitoring is performed at runtime,
i.e., online, by observing the trace of events produced by a current
execution of the system. Often there is a dedicated component that
performs the RV and becomes a part of the system itself. This makes
it possible to react in case some misbehavior was detected. However,
the overhead on the system in terms of response time and memory
footprint must be kept minimal as other wise the system’s behavior
may be changed [15]. Alternatively, RV can be performed offline
based on a previous execution whose trace was recorded and stored
in a log.

In order to observe events, the system needs to be instrumented
so that it generates events that can be fed to the monitor. Instru-
mentation is therefore a crucial part for RV frameworks. However,
this implies dependencies on the system under scrutiny due to the
used instrumentation approach. Falcone et al. [14] consequently do
not include instrumentation in their definition of a RV system, but
define such a system as consisting of a domain of possible verdicts,
a set of possible events, a set of possible properties, and a method
for generating monitors from properties.

In many RV approaches, it is common to specify the properties
using Linear Temporal Logic (LTL) or a timed variant [16,17]. LTL
is a formalism presented by Pnueli [18] that treats time in a linear
way, i.e., for every state of the system there is exactly one next state.

This characteristic enables the automatic generation of a finite-state
machine (FSM) that forms the monitor. In addition to the logi-
cal operators and (∧), or (∨), and not (¬), LTL supports temporal
operators next (denoted by X or O), finally/eventually (denoted by
F or ⋄), globally/always (denoted by G or □), and variants of a
binary until operator. A comprehensive introduction of LTL and its
principles can be found in Ref. [2].

3. RUNNING EXAMPLE

This section presents a simplified example architecture of an auto-
motive indicator system that we use to explain and evaluate the
approach. It has been chosen mainly, because it is is sufficiently
complex, i.e., contains different types of components and inter-
faces, while at the same time being easy to understand. It can be
found in the SystemDesk2 modeling tutorial [19] and is depicted in
Figure 2. It is particularly useful to illustrate the main concepts of
AUTOSAR3, which offers a standardized component-based archi-
tecture description that involves different layers [20].

For simplicity reasons, it only includes the front left and front right
direction indicators. The general functionality of such a system
should be familiar. The front left/right indicator is triggered by an
indicator switch. A hazard warning light switch triggers both direc-
tion indicators simultaneously. Corresponding sensors measure the
current status of the switches and actuators are used to turn on/off
the direction indicator lamps.

Assume that there is a failed test which involves checking that the
warning light switch indeed triggers the indicators. Usually, such a
test consists of many individual test steps in a sequence which set or
check certain values/variables. In this case, it could be a sequence
that (1) activates the warning light switch, (2) waits 200 ms (3)
checks the left and the right indicator. When one of these individ-
ual steps fails (e.g., step 3), the test fails. The first task would be to
find out what actually went wrong and then develop a hypothesis of
the actual defect. Thus, an integrator would probably want to check
the following assumptions about the behavior of the system:

A1 The warning light switch is pressed (anytime).

A2 The runnable of the IndicatorLogic component is invoked (any-
time).

A3 The indicators are always activated within 200ms after the warn-
ing light switch has been pressed.

A3 is a good candidate for an analysis on architecture level as it
involves different components and a real-time constrain.

4. REQUIREMENTS ANALYSIS

ARV’s concept is based on a requirements analysis that we con-
ducted in advance. The main requirements and design-goals are
presented hereafter.

2SystemDesk: www.dspace.com/go/systemdesk
3AUTomotive Open System ARchitecture: www.autosar.org



4 L. Stockmann et al. / Journal of Automotive Software Engineering 2(1) 1–14

Figure 2 Simple AUTOSAR indicator example.

4.1. The Architecture Model

One requirement is that ARV should be usable beyond domain
boundaries. This accommodates the heterogeneity of test setups.
They are often composed of components from different domains,
which themselves might be architectures. For example, on the
highest level, there are components representing the controller (the
system under test) and some representing the environment.

The latter is usually composed out of single-component models,
e.g., Functional Mockup Units (FMUs [21]). In the automotive
industry, the controller can be AUTOSAR-based, which means
that it forms an architecture on its own. AUTOSAR features some
unique architectural elements like “Runnable Entities” that wrap
the behavioral code and are mapped to tasks of the operating sys-
tem. Other domains can have custom descriptions that are created
using, e.g., the Architecture Analysis & Design Language (AADL
[22]). From this it follows that ARV’s underlying architecture model
must be very generic with the capability to represent hierarchies.

4.2. Recording Runtime Data

Another goal of an ARV framework is to allow users to confirm
their assumptions about the runtime behavior without having to
repeat the test. Furthermore, the approach should also be appli-
cable in real-time simulation scenarios. Here, it is not possible to
bring the simulation system to a halt for inspection without loos-
ing reproducibility [5]. Therefore, the runtime information must be
recorded.

Recording or logging simulation data has been done since the
beginning of simulation-based testing of electronic control devices.
From an engineer’s view, runtime information mainly comprises
signal curves. Looking from the software perspective, these signals
are just changes in variables over time. At integration level, this
implies an event-discrete nature of the system under scrutiny. Thus,
every variable change can be seen as an event. Every such event has a

timestamp, which implies a temporal relation to other events. How-
ever, depending on the resolution of the measurement, a timestamp
is not necessarily unique. This means that the order in which events
are recorded must be preserved.

In the past, only signals that were deemed significant for later anal-
ysis were recorded (often in a limited time frame to reduce the
amount of data). However, to have a complete picture of the sys-
tem’s behavior, it is required to collect the runtime data from all (or
at least most) of the involved components. Fortunately, there is a
trend in the industry to record more extensively—a consequence of
technological advancements in the area of real-time data logging,
generally more affordable storage solutions and the advent of big
data. There are even RV approaches that are based on the assump-
tion that log information is available anyhow [23,24].

It can be argued that even with today’s high capacity storage solu-
tions, it would be infeasible to log every instruction and all changes
in every local variable for hundreds of different configurations and
tests. However, ARV only requires runtime information related to
the architecture and not every single variable inside of a compo-
nent. This means that the amount of data that needs to be recorded
depends on the granularity of the architecture model. A less fine-
granular model means less runtime data, while a more fine-granular
model offers more insight, but also requires more runtime data.

4.3. Formulating Assumptions

In order to confirm or reject assumptions about the system’s behav-
ior, they must first be formalized based on the architectural ele-
ments. These ”correctness properties” then form the base for the
monitor synthesis and can then be evaluated automatically.

Two main aspects must be considered here: First, it must be possi-
ble to specify simple statements/assertions about the current state
and second, it must be possible to specify temporal relations. The
formalized simple statements are called atomic propositions and



L. Stockmann et al. / Journal of Automotive Software Engineering 2(1) 1–14 5

form the building blocks for more complex queries, where they are
combined using logical operators. An example is A1 of the run-
ning example that the warning light switch is pressed, i.e., the input
”io_wls” of the ”WarnLightsSensor” component is 1. However, it
is insufficient to just consider values of ports. The integrator also
wants to know if and when a component was active, i.e., when its
code was executed. This is important because a component not exe-
cuting when anticipated, or doing so unexpectedly, is a common
problem at integration level. An example is A2 that a runnable is
invoked. To be clear, this does not include any aspects about the
internal behavior of the component.

Regarding the temporal relations, it must be possible to state that a
proposition holds a certain num ber of milliseconds before or after
another proposition. This is important, because many behavioral
anomalies on integration level are due to an unexpected sequence
of events, such as the ones described in the introduction.

4.4. Accessing the Data

In spite of the fact that the granularity of the runtime data is limited
to what is required for the architecture, one can assume that it will
still be a significant amount of data. The framework must be able to
handle those amounts storage-wise. Furthermore, it should be pos-
sible for a user to test assumptions about the behavior of a system
in multiple executions. This gives a higher chance that the assump-
tion is rejected, which helps to uncover false assumptions and at the
same time increases assurance in an assumption that has not been
rejected. However, this means that the monitor may need to process
huge amounts of data.

As a result, the framework should separate the act of testing the
assumptions from the data processing (separation of concerns).
It must be noted that this is arguably more a design-goal than a
requirement. It ensures that a client does not need to have all run-
time data stored locally, nor should it be required to download or
process it. Instead, it must be possible to interface the framework
with state-of-the-art storage technologies, such as database man-
agement systems (DBMS) and cloud storage. This also ensures that
there are no special hardware requirements regarding the client
devices. Engineers increasingly expect to be able to work with
tablets or even smartphones. Heavy processing and data transfer
drains the battery on any portable device and should therefore be
offloaded to the storage engine.

To some extend, a separation is already inherent in the RV moni-
tor paradigm. However, as mentioned in Section 2, traditional RV
approaches implement it as FSM, which processes every single event
in a linear fashion. One RV approach that does this is called LARVA
(see Section 8.6 and Ref. [24]). It uses a database to store and replay
the events one by one. In contrast to that, a goal of ARV is to synthe-
size the monitor in a way that it uses the full potential of a DBMS,
e.g., by the use of composed queries.

5. ARV CONCEPT

The fundamental idea of ARV is to utilize the RV Monitor paradigm
to verify assumptions about the runtime of architecture elements.
Consider assumption A3 from Section 3. To verify it, a user would
need to check if any activation (i.e, a value change from 0 to 1) of

port ”io_wls” always yields the activation of both ”io bulb” ports
within 200ms. ARV lets a user formulate this inquiry, synthesizes
an RV monitor and applies it to the runtime data.

For this to work, architectural elements have to be associated with
”their” runtime data. Section 4.1 requires that ARV supports differ-
ent architectural models with different runtime information. ARV
accomplishes this through a generic domain-independent model,
which can represent the structure and runtime of any domain-
specific component-based architecture. This way, the same moni-
tor can be applied to all data sets. It requires a Domain Adapter that
transforms the domain-specific structure and runtime data into
ARV’s domain-independent model. The Domain Adapter must be
supplied by a domain expert who knows both models. This allows to
handle heterogeneous systems that consist of various kinds of archi-
tectures and run-time data. To support a new architecture descrip-
tion, it is sufficient to create a suitable Domain Adapter.

The translated domain-independent data is stored in a database.
However, a user might still want to formulate in a domain-
specific way. Therefore, the properties must also be translated by
the Domain Adapter. if users are not familiar with the domain
specifics, they can always use the domain-independent model for
their inquiries. In the context of RV of component-based systems,
this is a novel idea that none of the investigated approaches (see
Section 8) has considered so far.

Figure 3 shows an overview of the approach. One can see the
interaction between data acquisition (Logging) in the lower and
Monitoring in the upper part. The following sections provide some
further details regarding the concrete model and how the RV mon-
itor is synthesized.

5.1. Representing Structure

Designing a domain-independent model that sufficiently can rep-
resent any architecture is not trivial. It is a balancing act between
having a simple and thus easy to handle model and crafting one that

Figure 3 Overview of the main approach.



6 L. Stockmann et al. / Journal of Automotive Software Engineering 2(1) 1–14

is capable of representing distinctive features of individual models
like AUTOSAR. The domain-independent model that ARV uses to
represent structure has been designed to resemble what can be con-
sidered a common ground for any component-based architecture
in a simulation-based test environment. It can be seen in Figure 4.

We could not find an existing model that was better suited and com-
parably simple. However, it should be regarded as a first step.

The ”root” element is the Configuration that forms the container of
one instantiated system. It may be composed of one or more com-
ponents. A Component may contain other components (children),
which makes it a composite component. A Port is an interaction
point between components. The Data Element describes the actual
data that is transmitted via the port. It can be nested to allow for
complex data types (e.g., structs).

Components, Ports andData Elements are actually instances of their
respective type. This is in line with many component-based archi-
tectures and allows to reuse the component types. Also, verifying
propositions regarding a component type has a much wider scope
compared to that of one instance.

If the architecture in question has other element types that are rel-
evant for runtime analysis, they will have to be mapped on those
three just described. However, each of ARV’s domain-independent
model elements retains references to its domain-specific counter-
part. This is required (1) to translate domain-specific properties
into domain-independent ones that can be processed by the mon-
itor and (2) to translate the domain-independent results back into
domain-specific ones for inspection.

Finally, ARV adds another class named Context (short for Exe-
cution Context) to this model. It cannot be found in common
architectures. The name relates to the programming domain,
where every function or statement is executed within a designated
context (e.g., scope, stack frame, thread, task). Similarly, every
component can have several (execution) contexts, because its exe-
cution can be triggered from different places. A prominent example
is again AUTOSAR, where the component’s code may be executed
in the context of different AUTOSAR Runnable Entities, which in
turn are executed by different tasks. Furthermore, the Context also
holds information about the execution state of a component, which
is explained in the next section. If such information were to be

Figure 4 The structural model.

added to the component directly, they could not have several exe-
cution contexts at the same time. Using a designated class circum-
vents this problem and furthermore keeps the domain-independent
structural model clean and separated from the runtime aspects.

5.2. Representing Runtime Behavior

A monitor in RV processes runtime events, i.e., every new Event
induces a new runtime state, which a monitor checks for certain
conditions. ARV is no different in that regard, with the exception
that it solely relies on a history of recorded events (trace). Its run-
time model is depicted in Figure 5.

Besides the contexts, the Trace class at the top additionally contains
all meta-information regarding the recording. One example is the
simulation start time, which is the reference for the relative times-
tamps of the Events. Every Event relates to a structural element.
This relation is realized through the Context class, which has been
introduced in the previous section. ARV’s runtime model supports
nested contexts, i.e., contexts that are executed in (parent) contexts
forming a ContextStack. This allows to reproduce causal relations
between the execution of components.

There are two types of events: (1) those that relate to a signal trans-
mission between ports, which induces a Value change at a port and
(2) events that relate to the execution state of a Component in a par-
ticular Context. In its simplest form, the state can be either running
or suspended, meaning the component’s code gets executed or not.
A change of the execution state relates to either a start or terminate
event. Usually, the start event occurs when a function is called and
the terminate event when it returns.

Of course, such events and states can only be tracked if the architec-
ture supports it and if there is some means to generate the required
logs (see bottom half of Figure 3). However, ARV will still be usable
if this information is not available.

For a complex architecture standard like AUTOSAR, which
includes a multitasking capable operating system, two states are
insufficient. Here, a task has a more complex state machine. Basic
tasks have a further state ready and extended tasks have an addi-
tional state waiting. More details regarding task scheduling of real-
time systems can be found in the OSEK/VDX standard (see Ref.
[25]). ARV must consider the waiting state and its transitions wait
and resume, because they can be good indicators for resource dead-
locks. The ready state on the other hand, is not considered by ARV.
The ready state means that a task is prepared to run by the OS, but

Figure 5 The behavioral model.



L. Stockmann et al. / Journal of Automotive Software Engineering 2(1) 1–14 7

cannot, e.g., due to a task with a higher priority. On architecture
level, i.e., from the perspective of the component, this state is not
visible, because it is not a state of its execution context, but a state
internal to the OS. This is also why on architecture level, this state is
negligible. For this reason, ARV uses a state machine that contains
only the states running, suspended and waiting, which can be seen
in Figure 6.

5.3. Verifying Properties

Following the requirements from Section 4.3, ARV distinguishes
two types of atomic propositions. First, state propositions can refer
either to one of the previously defined states of a component’s Con-
text (see Figure 5) or to the current value of a data element at a port.
Values can be compared to other values for (in-)equality. In a for-
mal language, this can be expressed using standard operators =, ≠,
<, ≤, > and ≥. The second type of atomic proposition is the event
proposition. It incorporates information about the current event in
a specific Context, i.e., start, terminate, wait, resume, or sample.

To specify temporal and logical relations between those atomic
propositions (cf. Section 4.3), they must be combined using, e.g., a
property specification language. There are different languages avail-
able that each have their own benefits and drawbacks. However, as
stated in Section 2, LTL is a common means for specification in
RV. Furthermore, LTL has the advantage that several timed exten-
sions exist that take real-time properties into account. Because of
this and its familiarity, we have chosen LTL as base for the specifi-
cation language in ARV. Thus, it supports the standard LTL oper-
ators finally, until, and globally. We added the bounded interval
syntax and semantics found in the Metric Interval Temporal Logic
(MITL), which was presented by Alur and Feder in Ref. [26]. This
allows to specify real-time constraints. Furthermore, the language
supports the common logical operators not, and, or and implies.

5.4. Monitor Synthesis

The RV paradigm requires that a formal propertyφ is automatically
translated into a monitor (monitor synthesis). This monitor then
observes the system’s execution (monitoring). More specifically, it
consumes events produced by the system and outputs a verdict that
reflects the satisfaction of the property Sat(φ). In contrast to other
approaches, where the monitoring is performed at runtime, ARV
applies it to traces that were gathered in preceding simulation-based
tests. These traces are stored in a database that implements ARV’s
model.

Figure 6 The state machine of Context.

ARV performs a bottom-up monitor synthesis, where the formal
properties are processed by a visitor that traverses the parse tree.
This is similar to the approach by Maler et Nickovic [27], except that
ARV processes discrete events instead of continuous signals. The
result is a database query that returns the events in Sat(φ). Com-
pared to approaches like LARVA (see Ref. [28]), ARV synthesizes
composed queries that return only those events that are relevant,
i.e., satisfyφ or none if no such events exist. This fulfills the require-
ment of Section 4.4.

Mapping the language operators presented in the previous section
to the corresponding database query is straight forward for the log-
ical operators, but requires some effort for the temporal operators.
The former can be realized using set operations, such as union or
intersect. For the latter, we briefly explain the general approach
exemplarily for the finally operator, which is just a special case of
the until operator, but easier to illustrate.

Let Sat
(
⋄[x,y]φ

)
= Sat( finally [x, y]φ) describe the set of events

that satisfy the property φ at least once within the interval [x, y]. To
find this set, we have to go back in time from where φ holds. Con-
sider our example assumption A3 (Section 3). It could be formu-
lated as □

(
T ⇒ ⋄[0,200]Υ

)
, where T is the activation of the warn

light switch and Υ the activation of both indicators. In words: It
is always (globally) the case that an activation of the warn light
switch implies that both indicators are finally active within 200ms.
To find the relevant event set of the finally part, we have to first get
the events where both indicators are in fact active. Then, the earli-
est events satisfying ⋄[0,200]Υ would be those 200ms before. The lat-
est events would be those right before the indicators are deactivated
again.

In general, φ is not a single event, but can span multiple regions[
ai, bi

]
. The set of events satisfying ⋄[x,y] are therefore found in[

ai − y, bi − x
]

as illustrated in Figure 7.

A naive approach is to query for each event in Sat(φ) with times-
tamp tj the corresponding events within the interval

[
tj − y, tj − x

]
.

The union of all these sets then results in Sat
(
⋄[x,y]𝜑

)
. However,

querying all of these overlapping intervals requires many database
operations yielding a bad performance. Therefore, ARV treats sub-
sequent events as a union and only considers its boundaries.

6. EVALUATION OF IMPLEMENTABILITY

We have implemented a prototype and evaluated it using the exam-
ple presented in Section 3. The first step was to create the nec-
essary AUTOSAR-Domain Adapter as presented in the previous
section. It consists of three parts: (1) a configuration adapter to
insert concrete system configurations, (2) a log adapter to insert

Figure 7 Finally operator applied to a set of events.



8 L. Stockmann et al. / Journal of Automotive Software Engineering 2(1) 1–14

corresponding traces, and (3) a property adapter that allows the sys-
tems integrator to specify AUTOSAR-specific properties. Table 1
contains the mapping of AUTOSAR elements (table cells) to ARV’s
domain-independent structural model (table heading) and Table 2
the mapping of AUTOSAR-specific runtime data to the domain-
independent events.

We obtained the runtime data using a dedicated logging mech-
anism that we had added to the simulation platform.4 It uses
a feature of the AUTOSAR Runtime Environment (RTE) that
allows to hook in callbacks. By applying the respective adapters,
the AUTOSAR-specific runtime data has been translated into its
domain-independent form and stored into a database.

The final step of the evaluation was to formulate the actual assump-
tion and let ARV process it. We have used ANother Tool for Lan-
guage Recognition (ANTLR)5 to define the concrete grammar for
the language and to generate a corresponding parser.

Listing 1 exemplarily shows how A3 can be formulated.

Listing 1: ARV timed LTL grammar example
globally (
(DATA_ELEMENT@“WarnLightsSensor/out_wls/value” == 0 and finally
[0, 10]
DATA_ELEMENT@“WarnLightsSensor/out_wls/value” == 1)
implies finally [0, 200] (
DATA_ELEMENT@“FrontLeftActuator/bulb/value” == 1 and
DATA_ELEMENT@“FrontRightActuator/bulb/value” == 1));

Table 1 Mapping of AUTOSAR to ARV’s structural model.

COMPONENT PORT(S) CONTEXT(S)
System - -
ECU Com Task(s)
SWC RPort(s), PPort(s), PRPort(s), IRV Runnable(s)
ECU, electronic control unit; ARV, architectural runtime verification.

Table 2 Mapping of the runtime data.

CATEGORY AUTOSAR EVENT ARV EVENT
API Call Begin set

RTE API Call Return set/get
Signal Transmission set
Signal Reception get

COM Signal Invalidation sample
Signal Grp. Invalid. sample
Com Callback sample
Task Activate sample
Task Dispatch start

OS Task Termination terminate
Set OS Event sample
Wait OS Event wait
Received OS Event resume
Invocation start

Runnable Termination terminate
RTE, Runtime Environment.

4VEOS: www.dspace.com/go/veos
5ANTLR website: www.antlr.org

It can be seen that the current language has its shortcomings. The
value change from 0 to 1 must be formulated using an expression
that involves finally with a one-cycle interval. This is cumbersome
and a dedicated operator would be preferable, which is considered
future work.

For each node, the parser creates a database query, but instead of
generating SQL directly, ARV’s implementation uses Microsoft’s
Entity Framework6 (EF) in order to abstract the concrete DBMS.
This allowed us to test the implementation with different databases,
including SQLite,7 Mari-aDB8 and Azure SQL Database.9

Furthermore, EF provides a Language Integrated Query (LINQ)10

interface. It allows to compose queries that defer the actual database
access until a concrete event is requested (e.g., by querying the first
or last element of a selected set). In theory, this means that the
whole, or at least big parts of the parse tree can be composed into
one single query. It is also in line with the RV paradigm that a mon-
itor can be synthesized once and then applied to multiple traces of
the same structural elements.

However, using EF does not only have benefits. When implement-
ing the LTL operators we noticed that it is very difficult—if not
impossible—to synthesize one composed query of an LTL expres-
sion that does not require EF to download intermediate results from
the database. Arguably, one reason for this is that the data model
is probably too simple. For example, it does not provide any direct
way to get the related events of a data element, which leads to com-
plex LINQ expressions. But the actual problem is that EF lacks
support for many of the LINQ methods.11 Also, certain composed
queries cannot be executed on the database, but need to be pro-
cessed locally. This makes an implementation difficult, because one
must either resort to a for-loop, which might end up downloading
lots of data, or use a complex query involving multiple expensive
joins.

It is also not trivial to have parts of the query run in parallel to
improve the performance of the query, as the database context can
only be accessed by one thread. An application would have to open
a new database connection.

In addition to the unsupported LINQ methods, we have observed
runtime-exceptions, syntax errors regarding the generated SQL
query or even infinite loops when executing them depending on the
back-end (e.g., MySQL, SQLiite, Microsoft SQL...). Furthermore,
not every backend supports the same features and EF core, which
is the platform independent version of EF, behaved very differently
for some queries.

To summarize, it seems that EF might not be ideal when the LINQ
expressions are complex to the level that is imposed by our monitor

6Entity Framework website: www.asp.net/entity-framework
7SQLite website: www.sqlite.org
8MariaDB website: www.mariadb.org/about
9Azure SQL Database: www.azure.microsoft.com/services/sql-
database

10LINQ: www.msdn.microsoft.com/library/bb308959
11LINQ method support in EF: www.docs.microsoft.com/dotnet/framework/

data/adonet/ef/language-reference/supported-and-unsupported-
linq-methods-linq-to-entities



L. Stockmann et al. / Journal of Automotive Software Engineering 2(1) 1–14 9

synthesis. However, we need to do some more research to make a
definite statement.

For the graphical user interface we implemented a simple WPF12

front-end depicted in Figure 8.

It provides autocomplete for the property input, which is especially
helpful for users without LTL experience. Furthermore, the user can
select the desired domain adapter, so elements can be referred to in a
familiar way. For example, in the AUTOSAR domain, it is common
to reference elements by their path. The autocomple feature is useful
here as well.

Once a valid property has been entered, the RV monitor is syn-
thesized. The user can then select a trace and have the verification
performed. The results (if any) are presented as a table of runtime
events that support the assumption, i.e., satisfy the property.

7. EVALUATION OF PERFORMANCE

Performance-wise, only two aspects have a significant influence: the
monitor synthesis (see Section 5.4) and the actual database query.
The time ARV requires to synthesize a monitor depends on the
complexity of the inquiry, i.e., the LTL expression. However, we
found that it is almost negligible compared to the time needed to
process the monitor. Even on modest laptops, it hardly exceeded
500ms with any of our example assumptions.

This is why the main focus for our performance analysis is regarding
the execution of the monitor. We again used the example presented
in Section 3. The SQLite database was filled with three 12s traces
of a simulation. On a Haswel-based workstation PC, the monitor

Figure 8 Prototype of a graphical frontend for
architectural runtime verification (ARV).

12WPF introduction: https://docs.microsoft.com/visualstudio/designers/
introduction-to-wpf

evaluates Listing 1 in about 38s and uses about one gigabyte of
RAM. The high RAM utilization comes from a limitation of the
implementation, which results in some parts of the query not being
performed on the database, but locally. This in turn requires inter-
mediate results to be cached (see the previous section). It could be
solved by implementing those parts that rely on LINQ features not
supported by EF in a different way or by a redesign of the data
model. The latter is considered future work, because we consider it
more feasible.

In order to evaluate ARV on a mobile device, we relied on .NET
core and Xamarin.13 Unfortunately, the same monitor that works
well with EF for .NET framework did not work with EF core. We
tried different approaches to synthesize the LINQ, but were either
faced with runtime exceptions caused by known issues in EF core14

or long run times. To be fair it must be said that at the time of this
evaluation (mid 2019) EF core was still quite new and had known
limitations. We expect that the situation has improved since then.

Nevertheless, we wanted to find out how the core idea of ARV to
shift the processing to the database using composed queries com-
pares to an FSM-based approach that processes every event on the
client. Therefore, we conducted a small case study and im ple-
mented another test application that verifies A3 in two ways: (1)
using a (hand-crafted) composed query and (2) by using a “linear”
query that implements an FSM. Both have been realized directly in
C# using .NET core, so no synthesis is involved on our side. The
FSM has been implemented using switch case statements in a for
loop over every event and can be seen in Figure 9.

We furthermore deactivated EF’s change tracking. It is not needed
as we were not making any changes to the database, but it had a
significant negative performance impact on the linear query. Also,
the composed query was designed so that EF core generates one
SQL query, which does not require intermediate results to be down-
loaded. In order to keep the implementation simple, we only used
one trace instead of three.

Figure 9 State machine to verify assumption A3.

13Xamarin website: www.xamarin.com
14Entity Framework GitHub Issue 11900: Query source has already

been associated with an expression (https://github.com/
aspnet/EntityFrameworkCore/issues/11900)



10 L. Stockmann et al. / Journal of Automotive Software Engineering 2(1) 1–14

We evaluated both approaches using different client devices and
database hosts. For example, in one setup, we used a MariaDB
database on top of Arch Linux hosted in a virtual machine. This
setup allowed us to precisely measure the data that is transmitted
from the client to the database. Also, we could granularly limit the
network bandwidth, e.g., to simulate a cellular network.

We also wanted to see how both approaches perform on a remote
data storage in the cloud. After all, this is how ARV is intended to
be used (cf. Section 4.4). For this we used an Azure SQL (cloud)
database and evaluated the implementations on workstation PCs,
different Laptops and mobile devices.

Figure 10 shows a benchmark that was conducted using a commer-
cial off-the-shelf SAMSUNG Galaxy Tab A, which was connected
to the internet via WiFi. We varied the maximum Database Trans-
action Units (DTUs)15 and measured query times.

It can be seen that the time required for the linear query T linear is
unaffected by the DTU setting, staying at 26 seconds. In the Azure
portal, we also observed that not all DTUs were used. The tablet, on
the other hand, was at full load the whole time as far as we could
measure. Thus, it seems that the CPU performance of the tablet was
the limiting factor. We expected that the sequential processing of
every event would occupy one CPU core. However, we observed
that the other cores were busy, too. We attribute this to the garbage
collection that kicked in frequently, because of the high RAM us
age. Furthermore, we observed that downloading all data stalled the
network connection on the tablet device. As expected, the high CPU
and network load resulted in a high battery drain and the device got
seemingly warm.

On the other hand, when performing the composed query, the
tablet stayed mostly idle. EF core only transmitted the SQL and
retrieved the result (as expected). This resulted in a very conser-
vative use of RAM, CPU and network bandwidth. Meanwhile, The

Figure 10 Varying cloud database performance.

15Microsoft’s definition of Database Transaction Units (DTUs):
https://docs.microsoft.com/azure/sql-database/sql-database-
purchase-models#dtu-based-purchasing-model

database peaked at the DTU limit. The most significant perfor-
mance increase can be observed when changing from 50 to 100
DTUs. Here, the composed query outperforms the linear query.
After that, the changes are negligible.

Generally, the composed query was heavy on the databases. When
we hosted the DBMS ourselves, we observed that it strained at least
one CPU core to 100% until the processing was completed. The rea-
son that all databases struggle so much with the composed query is
the same that was responsible for the problems described in the last
section, i.e., there is no direct connection between related events of
a value change. Currently, it requires an expensive self join, where
every value event of a data element is joined with its successor. For
example, the first finally expression in Listing 1 requires this to find
the events where the warn light sensor value turns from 0 to 1. In
the database, those events are not adjacent, but need to be queried
explicitly.

Unfortunately, we cannot present every single result here. Most of
them are very specific to the hardware used. However, overall the
results were consistently showing that the linear query scales with
the client hardware, i.e., CPU speed and RAM, whereas the com-
posed query only depends on DBMS performance. This means that
if the client is a modern PC and the network is fast, the linear query
is much faster. If the client, however, is a mobile device, or the band-
width is considerably reduced, the composed query outperforms
the linear query.

To summarize, one can say that the approach of using composed
queries instead of linear queries has its benefits. Especially, when the
client is a battery powered mobile device operated in a bandwidth-
limited environment. However, there is still room for improvement,
which is discussed in Section 9.

8. RELATED WORK

We have investigated different RV approaches regarding their
applicability to our requirements. They all follow the principles
described in Section 2. Most approaches are thus primarily designed
to be applied at runtime, as they employ a FSM for the verifica-
tion, which ARV does not. Also, many approaches require that the
architecture is enhanced with a dedicated centralized monitoring
component, whereas ARV does not specify how the runtime infor-
mation is collected. Nevertheless, approaches like RRF, LARVA or
LOGSCOPE had a considerable influence on ARV’s design.

8.1. MOP and MOPBox

One of the best known and most accepted approaches in the area of
RV is the Monitoring Oriented Programming framework (MOP).
Originally proposed in Ref. [29], MOP is not an implementation of
RV, but instead a paradigm for establishing it as a generally applied
means in software development. Therefore, MOP itself is indepen-
dent of any programming or property specification language. In
order to instantiate MOP in a specific domain, a language client
is needed, e.g., JavaMOP for programs written in Java or BusMOP
for PCI bus traffic. These language clients typically implement the
instrumentation of the system under test and provide user inter-
faces and one could say that they consequently serve as (basic)
domain-specific adapters. A wide range of logic plugins addresses



L. Stockmann et al. / Journal of Automotive Software Engineering 2(1) 1–14 11

the fact that property specification languages differ in their expres-
siveness and conciseness. Such a plugin would also be required to
support real-time constraints, which is not available out of the box.

A generic implementation of this paradigm for JAVA is provided by
MOPBox (see Ref. [30]). It follows a library-based approach with a
simple API to define monitors as FSM which can be labeled with
any kind of Java objects. Similar to MOP, MOPBox has no built-in
support for real-time properties.

8.2. ASML

The first approach that considered RV at the level of software
architecture was developed in 2001 by Mike Barnett and Wolfram
Schulte at Microsoft Research (see Ref. [31]). It relies on a proxy
component that receives every call from the client and forwards it
to a model, which describes the intended behavior, as well as to
the server. Both then execute concurrently. Before delivering the
results of the server back to the client, the proxy checks whether
the results coincide with those returned by the model. A violation
of the (modeled) interface has been found if the results differ. The
model is described in a dedicated architecture description language
(ADL) named Abstract Machine Language (ASML).

Being one of the first approaches addressing this topic at all, its
applicability is rather limited. It only supports specific client-server
architectures. Thus, it would not be feasible to use it together with
an AUTOSAR system. Also, it does not feature temporal relations
of any kind.

8.3. DRACO

A second approach focusing on RV at the level of software archi-
tecture is named DistriNet Reliable and Adaptive COmponents
(DRACO) and was presented by Vandewoude et al. in Ref. [32].
DRACO is a modular component RTE built as an extension of the
SEESCOA Component Methodology (see Ref. [33]). The language
used to specify the software architecture of a system under test is
closely inspired by the Java programming language and the actual
implementation of the component interaction is automatically gen-
erated in Java.

It addresses real-time systems by providing an optional central
module to verify timing constraints, which can be attached to the
connectors between components. It supports two different types of
timing constraints. One is used to specify deadlines of messages, the
other one explicitly addresses the periodicity of sending/receiving
messages in embedded systems. Other temporal constraints are not
supported. The constraints are verified by intercepting the send-
ing/receiving of messages and forwarding such events to the central
monitoring module.

Similar to ASML, DRACO is tied to its specific ADL. As this lan-
guage is finally converted to Java, it cannot be easily applied for
embedded systems, where C/C++ is still the dominant language
(although there has been some progress in adopting Java in this
domain).

8.4. RRF

The Runtime Reflection Framework (RRF) presented by Bauer et al.
in Ref. [16] is similar to ARV in some aspects. It also aims at iden-
tifying misbehavior (and its causes) in distributed real-time sys-
tems. The framework explicitly supports real-time safety properties,
which can be specified using a timed variant of LTL. Correspond-
ing properties are then monitored with the help of timed automata.

A central idea of the approach is to decouple instrumentation and
verification. This is achieved by introducing separate layers for log-
ging events of the system under test and monitoring properties. It
additionally includes a layer for diagnosing failure causes and a mit-
igation layer to recover from certain kinds of failures at runtime.

The potential distributed nature of a system under test is also taken
into account in the design of this layered architecture. Logging and
monitoring are performed locally for each component while diag-
nosis and mitigation are done centrally considering a holistic sys-
tem view. The authors assume that usually only few components
fail in a given system under test. Based on this assumption, they
try to differentiate symptoms (e.g., wrong outputs) from actual fail-
ures by inferring a minimal subset of (probably) faulty components
during diagnosis. In order to do so, they require to have a simple
description of the system’s behavior in terms of propositional for-
mulas describing dependencies between correct input and output
values within the system.

Bauer et al. validate their approach in Ref. [34] by explaining how
to apply RRF to an AUTOSAR system. Here, for each existing com-
ponent a dedicated AUTOSAR-compliant component for collect-
ing logs and a monitoring component can be generated. Together
with a corresponding diagnosis component, these components are
then added to the architecture.

It appears that the (real-time) systems targeted by RRF are very sim-
ilar to the ones targeted by ARV. However, there are differences in
how RV is implemented. For example, in RRF it is performed locally
with respect to a certain component in order to identify misbehav-
ior, while the overall system architecture is first taken into account
on the diagnosis layer. Hence, the monitoring aims at detecting
faulty components. ARV in contrast focuses on misbehavior in the
interaction of several components.

8.5. RV-BIP

In 2011, Falcone et al. presented RV of Behavior Integration Priority
(BIP) systems (RV-BIP) in Ref. [35]. Their work is based on the BIP
framework (see Ref. [36]), which provides an ADL to design (real-
time) software architectures. The approach is not tied to a particu-
lar property specification language. Instead, Falcone et al. describe
how to generally apply RV to component-based systems. In partic-
ular, they use an FSM that can be generated from any kind of LTL.
Additionally, the authors introduce events based on atomic propo-
sitions that incorporate state information such as, e.g., the current
value of a component’s variable. These events are monitored by a
generated monitoring component that is inserted into a given BIP
software architecture and then connected to each other component.



12 L. Stockmann et al. / Journal of Automotive Software Engineering 2(1) 1–14

The fact that the approach only works for BIP architectures makes
it difficult to apply it to different domains. BIP architectures must
be specified in terms of automata that include detailed behavioral
information. Although BIP explicitly addresses the modeling of
real-time systems, timing constraints can only be realized via a ded-
icated clock component.

8.6. LARVA

Originally, LARVA has been presented as an RV framework
intended to instrument and monitor Java programs (online) [28].
It is based on timed automata that are specified in the underlying
LARVA script language. Here, the system under test directly com-
municates with the monitor by emitting events.

In Ref. [24], Colombo et al. describe how to apply this approach
offline in order to minimize the runtime overhead especially in the
context of real-time systems. In offline mode, LARVA uses an event
player to read a previously recorded log and emit the events to the
monitor. LARVA uses a relational database to efficiently store a log.
Regarding this aspect, LARVA was our main inspiration. However,
in contrast to ARV, the approach stipulates that all relevant events
are downloaded (via SQL select statements) and then passed to the
monitor sequentially in chronological order.

8.7. LOGSCOPE

Barringer et al. follow a similar approach at NASA’s Jet Propulsion
Laboratory with LOGSCOPE in that they perform an offline RV
based on logs [23]. This idea stems from traditional workflows at
NASA, in which logs have been analyzed with the help of Python
scripts written by the test engineers. The goal is mainly to ease
test automation and debugging while producing only little runtime
overhead.

They use an SQL database to store logs for one execution of the sys-
tem under test. In order to support different types of logs, internally
only an abstraction of a log is used while specific log formats can be
supported with the help of corresponding log extractors. This idea
influenced ARV’s Domain Adapter concept.

LOGSCOPE also provides a property specification language for
temporal patterns. These patterns have semantics similar to LTL
and are automatically translated into parameterized automata. In
contrast to LTL, patterns allow to easily specify ordered and
unordered sequences of events. However, as stated earlier, the
automata-based monitoring has its drawbacks, which is why ARV
follows a different path.

The fact that the specification language is based on Python allows
it to use any Python methods and libraries combined with custom
Python predicates, which is a big advantage of LOGSCOP.

8.8. COPILOT

Pike et al. present an approach in Ref. [37] which is designed for
monitoring periodically-scheduled hard real-time systems (online).
They introduce the real-time guiding principles FaCTS, which state
that any monitoring approach targeting real-time systems should

neither change the functionality, certifiability, timing, nor SWaP
(size, weight, and power) tolerances of the system under test. In
order to follow these guidelines, they propose a sampling-based
monitoring strategy as opposed to all approaches mentioned so far.

In general, sampling-based monitoring may lead to false results as
values may be missed or sampled multiple times. The authors argue
that for hard real-time systems, sampling is still suitable if the mon-
itor and the monitored program are synchronized.

The monitor is specified in terms of streams (sequences) of state
variables that shall be monitored using a language called COPILOT,
which is embedded into Haskell. Monitors written in COPILOT
are compiled into C programs that implement a state machine. The
underlying COPILOT language is very powerful. It basically allows
to implement any kind of logic by the use of custom operators and
libraries.

It must be noted that ARV can also work with sampled data as it
does not mandate, how the traces are captured. However, consider-
ing the argumentation of the authors themselves, there are caveats:
(1) Even if monitor and monitored program are perfectly synchro-
nized, sampling is only possible for periodic events (e.g., recurring
value accesses) and (2) it is not possible to guarantee that any asyn-
chronous event can be recorded. Thus, it could have an impact on
reliability.

8.9. ENFORCER

Cotard et al. propose a service called ENFORCER that implements
RV for AUTOSAR systems [17]. In particular, ENFORCER aims at
the detection of mis-behavior in communication patterns involving
different OS tasks. In this approach, the first step is to describe the
expected system behavior by the means of state machines that react
to certain system events.

Properties are specified in LTL and in the second step translated
into state machines. The resulting automata yield the final monitor.
In order to explicitly address the FaCTS principles introduced along
with COPILOT, instrumentation and monitoring are performed
inside a modified Real-Time OS (RTOS) kernel as this generates lit-
tle runtime overhead and bypasses the scheduler.

As the monitor resides inside the kernel, it cannot inspect commu-
nication outside the realms of the OS. An example is the communi-
cation inside the AUTOSAR Virtual Functional Bus.

ENFORCER has been implemented in the kernel of an AUTOSAR-
compliant open-source RTOS named Trampoline [38]. It can
be configured using the OSEK Implementation Language (OIL),
which has been extended by Cotard et al., so that it allows to define
the required events, automata and properties.

9. CONCLUSION AND FUTURE WORK

This paper contributes a refined presentation of ARV—a new way
of using RV on architecture level. It consists of a methodology
and framework that enables a user to verify assumptions about
the runtime behavior of component-based architectures by using
a language based on an extended LTL. The goal is to help devel-
opers in the role of integrators to verify/refute hypotheses about



L. Stockmann et al. / Journal of Automotive Software Engineering 2(1) 1–14 13

misbehavior. The assumptions can be formulated “beyond model
boundary,” as the underlying model is domain-independent. New
architecture models can be integrated with the help of the Domain
Adapter concept. Another advantage is that properties are trans-
lated into compendious database queries. Thus, in contrast to other
RV approaches, where the client needs to process every individual
runtime event, ARV allows to offload the processing to a standard
database. Through the use of EF, it supports multiple DBMS.

We evaluated ARV using an AUTOSAR system. A prototype with
a graphical interface enables a user to verify arbitrary hypotheses
concerning the runtime behavior at architecture level. We further-
more evaluated the performance of the core concept of ARV against
the traditional approach using FSM. For this, we benchmarked the
composed query of a complex property against its “linear” coun-
terpart, where every single event is processed on the client. We
have found that ARV’s approach generally fulfills the requirement
to offload the main processing work to the database and therefore
performs better on mobile devices.

Still, there is room for improvement. The evaluation has shown that
our data model combined with the underlying technologies (EF,
relational databases) is not ideal and may lead to complex queries
that yield high memory usage and CPU load on both, the client and
the database server. One reason is that there is no direct connec-
tion between the events of value changes in the model. We believe
that a “shortcut,” which connects two value events of the same data
element would greatly improve the query performance and reduce
the overall query complexity. First experiments with an improved
model have already been conducted and show a significant decrease
in query time (order of magnitude). This is especially apparent
when verifying assumptions over several configurations or traces.

Another aspect is the underlying database access. EF and relational
databases might not be the best solution for ARV. It might be bet-
ter to use other database technologies and paradigms that are more
suited to runtime data and its relation to the architecture (e.g., graph
and time-series databases).

Another aspect is the query language. Even with the autocomplete
feature, our LTL variant is still quite cumbersome to use in a pro-
ductive environment. Other languages, e.g., those used to query
graphs or a custom domain-specific language might be more suit-
able to express typical assumptions regarding the runtime of inte-
grated architectures. Work on this subject has already begun.

Finally, we want to further evaluate the universality of ARV and its
capabilities. Therefore, we want to apply the approach to an actual
heterogeneous system in the aerospace domain.

CONFLICTS OF INTEREST

There is no conflict of interest.

AUTHORS’ CONTRIBUTIONS

Lars Stockmann wrote the majority of the article. He performed
the experiments in the performance evaluation section and super-
vised Sven Laux, who designed the models, did the majority of
the research and implemented the prototype as part of his mas-
ter thesis. Both authors worked out the main concept presented

in the paper. Professor Eric Bodden supervised the project as a
whole, contributed the name of the framework, provided informa-
tion about runtime verification and contributed valuable reviews.

REFERENCES

[1] ISO. Road vehicles - functional safety; ISO, Geneva, Switzerland,
2011.

[2] Baier, C, Katoen, J-P, Larsen, KG. Principles of model checking.
MIT Press; Cambridge, Massachusetts, London, England, 2008.

[3] Stockmann, L. Debugging models in the context of automotive
software development. In Proceedings of the Doctoral Sympo-
sium of the ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems; Ottawa, Canada,
2015. http://ceur-ws.org/Vol-1531/paper5.pdf.

[4] Thane, H. Monitoring, testing and debugging of distributed real-
time systems, PhD thesis. Royal Institute of Technology; Royal
Institute of Technology, KTH S-100 44 Stockholm, Sweden, 2000.

[5] Sundmark, D. Deterministic replay debugging of embedded
real-time systems using standard components; Number 24 in
Mälardalen University Press Licentiate Theses, Institutionen för
Datavetenskap, 2004.

[6] Osterlie, T, Wang, AI. Debugging integrated systems: an ethno-
graphic study of debugging practice. In 2007 IEEE International
Conference on Software Maintenance, Paris, France: 2007, pp.
305–314.

[7] Farshizadeh, E, Briese, H, Beringer, S, Holler, D, Raja, H,
Stockmann, L. Design and analysis of a controller from sys-
tem design idea to AUTOSAR architecture with basic soft-
ware modules. In 6. Tagung Simulation und Test für die
Automobilelektronik, Stuttgart, Germany; 2014. https://www.ccs-
labs.org/bib/farshizadeh2014design/.

[8] Zeller, A. Why programs fail: a guide to systematic debugging. 2nd
ed., San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.;
2009.

[9] Araki, K, Furukawa, Z, Cheng, J, Unioersity, K. A general frame-
work for debugging. IEEE Sofmare 1991;8;14–20.

[10] Tiarks, R, Roehm, T. Challenges in program comprehension.
Softwaretechnik-Trends 2012;32;19–20.

[11] Stockmann, L, Laux, S, Bodden, E. Architectural runtime ver-
ification. In 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C), Hamburg, Germany; 2019,
pp. 77–84.

[12] Crnkovic, I, Chaudron, M, Larsson, S. Component-based devel-
opment process and component lifecycle. In International Con-
ference on Software Engineering Advances, Tahiti: IEEE; 2006, pp.
44–44.

[13] Leucker, M, Schallhart, C. A brief account of runtime verification.
J Logic Algebraic Program 2009;78;293–303.

[14] Falcone, Y, Havelund, K, Reger, G. A tutorial on runtime verifi-
cation. Eng Dependable Softw Syst 2013;34;141–175.

[15] Bauer, A, Leucker, M, Schall-hart, C. Comparing ltl semantics for
runtime verification. J Logic Comput 2010;20;651–674.

[16] Bauer, A, Leucker, M, Schall-hart, C. Model-based runtime anal-
ysis of distributed reactive systems. In Software Engineering Con-
ference, Sydney, Australia: IEEE; 2006, p. 10.

[17] Cotard, S, Faucou, S, Béchennec, J-L, Queudet, A, Trin-quet, Y.
A data flow monitoring service based on runtime verification for

https://doi.org/10.5555/1373322
https://doi.org/10.5555/1373322
https://doi.org/10.1109/ICSM.2007.4362643
https://doi.org/10.1109/ICSM.2007.4362643
https://doi.org/10.1109/ICSM.2007.4362643
https://doi.org/10.1109/ICSM.2007.4362643
https://doi.org/10.1016/B978-0-12-374515-6.X0000-7
https://doi.org/10.1016/B978-0-12-374515-6.X0000-7
https://doi.org/10.1016/B978-0-12-374515-6.X0000-7
https://doi.org/10.1016/B978-0-12-374515-6.X0000-7
https://doi.org/10.1016/B978-0-12-374515-6.X0000-7
https://doi.org/10.1007/BF03323460
https://doi.org/10.1007/BF03323460
https://doi.org/10.1109/ICSA-C.2019.00021
https://doi.org/10.1109/ICSA-C.2019.00021
https://doi.org/10.1109/ICSA-C.2019.00021
https://doi.org/10.1109/ICSA-C.2019.00021
https://doi.org/10.1109/ICSEA.2006.261300
https://doi.org/10.1109/ICSEA.2006.261300
https://doi.org/10.1109/ICSEA.2006.261300
https://doi.org/10.1109/ICSEA.2006.261300
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1109/ASWEC.2006.36
https://doi.org/10.1109/ASWEC.2006.36
https://doi.org/10.1109/ASWEC.2006.36
https://doi.org/10.1109/HPCC.2012.220
https://doi.org/10.1109/HPCC.2012.220
http://ceur-ws.org/Vol-1531/paper5.pdf
https://www.ccslabs.org/bib/farshizadeh2014design/
https://www.ccslabs.org/bib/farshizadeh2014design/


14 L. Stockmann et al. / Journal of Automotive Software Engineering 2(1) 1–14

autosar. In 2012 IEEE 14th International Conference on High
Performance Computing and Communication & 2012 IEEE 9th
International Conference on Embedded Software and Systems
(HPCC-ICESS), Liverpool, UK: IEEE; 2012, pp. 1508–1515.

[18] Pnueli, A. The temporal logic of programs. In 18th Annual Sym-
posium on Foundations of Computer Science, Providence, RI,
USA: IEEE; 1977, pp. 46–57.

[19] System desk guide. dSPACE GmbH; 2016.
[20] Kirschke-Biller, F, Furst, S, Lupp, S, Bunzel, S, Schmerler, S,

Rimkus, R, et al. AUTOSAR - a worldwide standard current
developments, rollout and outlook. In 5th VDI Congress Baden-
Baden Spezial 2012, Baden-Baden, Germany; 2011. https://
www.yumpu.com/en/document/view/7612203/a-worldwide-
standard-current-developments-roll-out-and-autosar.

[21] Blochwitz, T, Otter, M, Arnold, M, Bausch, C, Clauß, C, Elmqvist,
H, et al. The functional mockup interface for tool independent
exchange of simulation models. In Proceedings of the 8th Inter-
national Modelica Conference, Dresden, Germany; 2011.

[22] Society of Automotive Engineers. SAE Standards: Architecture
Analysis & Design Language (AADL), SAE International; 2017.
https://www.sae.org/standards/content/as5506c/.

[23] Barringer, H, Groce, A, Havelund, K, Smith, M. Formal analysis
of log files. J Aeros Comput Inf Commun 2010;7;365–390.

[24] Colombo, C, Pace, GJ, Abela, P. Offline runtime verification with
real-time properties: a case study. In Proceedings of WICT; Uni-
versity of Malta, Valletta, Malta, 2009. http://www.cs.um.edu.mt/
gordon.pace/Research/Papers/wict2009-02.pdf.

[25] OSEK Group. OSEK/VDX Operating System Specification 2.2.3;
2005. https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/
os223.pdf

[26] Alur, R, Feder, T, Henzinger, TA. The benefits of relaxing punc-
tuality. J ACM 1996;43;116–146.

[27] Maler, O, Nickovic, D. Monitoring temporal properties of con-
tinuous signals. In Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems, Grenoble, France: Springer;
2004, pp. 152–166.

[28] Colombo, C, Pace, GJ, Schneider, G. Dynamic event-based run-
time monitoring of real-time and contextual properties. In Inter-
national Workshop on Formal Methods for Industrial Critical
Systems, L’Aquila, Italy; Springer: 2008, pp. 135–149.

[29] Chen, F, Roşu, G. Towards monitoring-oriented programming:
a paradigm combining specification and implementation. Elec-
tronic Notes Theor Comput Sci 2003;89;108–127.

[30] Bodden, E. Mopbox: a library approach to runtime verification. In
International Conference on Runtime Verification, San Francisco,
CA, USA: Springer; 2011, pp. 365–369.

[31] Barnett, M, Schulte, W. Spying on components: a runtime verifi-
cation technique. In Workshop on Specification and Verification
of Component-Based Systems, Tampa, FL, USA: Citeseer; 2001,
pp. 7–13. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.913.7985&rep=rep1&type=pdf#page=12.

[32] Vandewoude, Y, Rigole, P, Urting, D, Berbers, Y. Draco: an
adaptive runtime environment for components. Appendix of
the EMPRESS deliverable for Run-time Evolution and Dynamic
(Re) configuration of components; Information Technology
for European Advancement (ITEA): High Tech Campus 69-3,
5656 AG Eindhoven, The Netherlands. 2003. https://distrinet.cs.
kuleuven.be/projects/empress/deliverables/D2.4-2.5_Appendix_
A_v1.0_Public_Version.pdf.

[33] Urting, D, Holvoet, T, Berbers, Y. Embedded software develop-
ment: components and contracts. In Proceedings of the IASTED
International Conference Parallel and Distributed Computing
and Systems, 1027-2658 (ISSN), Citeseer, ACTA Press, Anaheim,
California, USA, 2001, pp. 658–690.

[34] Bauer, A, Leucker, M, Schall-hart, C. Runtime reflection: dynamic
model-based analysis of component-based distributed embedded
systems. In Modellierung von Automot Syst 2006. http://christia
n.schallhart.net/publications/2006--mas--runtime-reflection-dy
namic-model-based-analyis-of-component-based-distributed-e
mbedded-systems.pdf.

[35] Falcone, Y, Jaber, M, Nguyen, T-H, Bozga, M, Bensalem, S. Run-
time verification of component-based systems. In International
Conference on Software Engineering and Formal Methods, Mon-
tevideo, Uruguay: Springer; 2011, pp. 204–220.

[36] Basu, A, Bozga, M, Sifakis, J. Modeling heterogeneous real-time
components in bip. In Fourth IEEE International Conference on
Software Engineering and Formal Methods (SEFM 2006), Pune,
India: IEEE; 2006, pp. 3–12.

[37] Pike, L, Goodloe, A, Morisset, R, Niller, S. Copilot: a hard real-
time runtime monitor. In International Conference on Runtime
Verification, St. Julians, Malta: Springer; 2010, pp. 345–359.

[38] Bechennec, J-L, Briday, M, Faucou, S, Trinquet, Y. Trampoline
an open source implementation of the osek/vdx rtos specifica-
tion. In IEEE Conference on Emerging Technologies and Factory
Automation (ETFA ’06), Prague, Czech Republic: IEEE; 2006, pp.
62–69.

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.3384/ecp11063105
https://doi.org/10.3384/ecp11063105
https://doi.org/10.3384/ecp11063105
https://doi.org/10.3384/ecp11063105
https://doi.org/10.2514/1.49356
https://doi.org/10.2514/1.49356
http://www.cs.um.edu.mt/gordon.pace/Research/Papers/wict2009-02.pdf
http://www.cs.um.edu.mt/gordon.pace/Research/Papers/wict2009-02.pdf
https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/os223.pdf
https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/os223.pdf
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/227595.227602
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1016/S1571-0661(04)81045-4
https://doi.org/10.1016/S1571-0661(04)81045-4
https://doi.org/10.1016/S1571-0661(04)81045-4
https://doi.org/10.1007/978-3-642-29860-8_28
https://doi.org/10.1007/978-3-642-29860-8_28
https://doi.org/10.1007/978-3-642-29860-8_28
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.913.7985&rep=rep1&type=pdf#page=12
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.913.7985&rep=rep1&type=pdf#page=12
https://distrinet.cs.kuleuven.be/projects/empress/deliverables/D2.4-2.5_Appendix_A_v1.0_Public_Version.pdf
https://distrinet.cs.kuleuven.be/projects/empress/deliverables/D2.4-2.5_Appendix_A_v1.0_Public_Version.pdf
https://distrinet.cs.kuleuven.be/projects/empress/deliverables/D2.4-2.5_Appendix_A_v1.0_Public_Version.pdf
https://doi.org/10.1007/3-540-49255-0_41
https://doi.org/10.1007/3-540-49255-0_41
https://doi.org/10.1007/3-540-49255-0_41
https://doi.org/10.1007/3-540-49255-0_41
https://doi.org/10.1007/3-540-49255-0_41
http://christian.schallhart.net/publications/2006--mas--runtime-reflection-dynamic-model-based-analyis-of-component-based-distributed-embedded-systems.pdf
http://christian.schallhart.net/publications/2006--mas--runtime-reflection-dynamic-model-based-analyis-of-component-based-distributed-embedded-systems.pdf
http://christian.schallhart.net/publications/2006--mas--runtime-reflection-dynamic-model-based-analyis-of-component-based-distributed-embedded-systems.pdf
http://christian.schallhart.net/publications/2006--mas--runtime-reflection-dynamic-model-based-analyis-of-component-based-distributed-embedded-systems.pdf
https://doi.org/10.1007/978-3-642-24690-6_15
https://doi.org/10.1007/978-3-642-24690-6_15
https://doi.org/10.1007/978-3-642-24690-6_15
https://doi.org/10.1007/978-3-642-24690-6_15
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1109/ETFA.2006.355432
https://doi.org/10.1109/ETFA.2006.355432
https://doi.org/10.1109/ETFA.2006.355432
https://doi.org/10.1109/ETFA.2006.355432
https://doi.org/10.1109/ETFA.2006.355432
https://www.yumpu.com/en/document/view/7612203/a-worldwide-standard-current-developments-roll-out-and-autosar
https://www.yumpu.com/en/document/view/7612203/a-worldwide-standard-current-developments-roll-out-and-autosar
https://www.yumpu.com/en/document/view/7612203/a-worldwide-standard-current-developments-roll-out-and-autosar
https://www.sae.org/standards/content/as5506c/
https://doi.org/10.1109/HPCC.2012.220
https://doi.org/10.1109/HPCC.2012.220
https://doi.org/10.1109/HPCC.2012.220
https://doi.org/10.1109/HPCC.2012.220

	Using Architectural Runtime Verification for Offline Data Analysis
	1. INTRODUCTION
	2. ABOUT RV AND LINEAR TEMPORAL LOGIC
	3. RUNNING EXAMPLE
	4. REQUIREMENTS ANALYSIS
	4.1. The Architecture Model
	4.2. Recording Runtime Data
	4.3. Formulating Assumptions
	4.4. Accessing the Data

	5. ARV CONCEPT
	5.1. Representing Structure
	5.2. Representing Runtime Behavior
	5.3. Verifying Properties
	5.4. Monitor Synthesis

	6. EVALUATION OF IMPLEMENTABILITY
	7. EVALUATION OF PERFORMANCE
	8. RELATED WORK
	8.1. MOP and MOPBox
	8.2. ASML
	8.3. DRACO
	8.4. RRF
	8.5. RV-BIP
	8.6. LARVA
	8.7. LOGSCOPE
	8.8. COPILOT
	8.9. ENFORCER

	9. CONCLUSION AND FUTURE WORK


