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1. INTRODUCTION

Instances of one-dimensional continua having geometries deter-
mined by minimization of a bending energy are ubiquitous in the 
mathematical, physical and biological sciences. These range from 
models of elongated beams used in construction to the flagella 
of microorganisms. In our everyday experience, we encounter a 
myriad of fibers, wires, cables, hoses and rods whose shapes are 
determined by this type of variational principle. One commonly 
encountered aspect in the study of these continua, which we hence-
forth refer to as rods, is that the governing energy may be anisotro-
pic, i.e. it is dependent on the direction of the curve, as represented 
by the unit tangent vector T. Understanding the morphology of 
rods is essential since the geometry is a visual manifestation of the 
physical properties acting on the rod.

In a recent paper [1], we developed a methodology to study the 
equilibria arising from minimizing a specific type of anisotropic 
bending energy in two and three dimensions. In this model, the 
Young’s modulus, which measures the rod’s resistance to bending, 
is given by a continuous periodic function of the angle the tangent 
makes with a fixed direction. In the two dimensional case, the 
equations for the extremals of this bending energy are easily inte-
grated and all examples can be explicitly found. We recall that in 
the isotropic case, this is usually achieved via elliptic functions but 
our method does not rely on this tool.

In the isotropic case, the problem of determining the bending 
deformations of rods was first formulated by J. Bernoulli in 1691. 

Later, D. Bernoulli, in a letter to L. Euler, suggested to study elas-
ticae as minimizers of the bending energy. Then, L. Euler, [2] (see 
also the translation [3]) achieved a classification of planar elasticae 
into nine specific types, although some partial results were already 
known to J. Bernoulli. For more details about the history of (iso-
tropic) elasticae we refer to [1] and references therein.

How is Euler’s classification affected if the rod’s energy is aniso-
tropic? This is the principal question we consider. The main 
result of the present paper is to show that for functionals pos-
sessing an essential symmetry, all of the types in Euler’s classi-
fication are present although the order in which they occur, in 
terms of a governing parameter, may be more complicated than 
in the isotropic case. Also, in the anisotropic case, there is an 
additional degree of freedom arising from quasi-rotations of 
each of the nine types.

The paper is organized as follows. In Section 2 we describe the 
materials and methods used for the development of the paper. In 
Section 3.1, we formulate the definition of anisotropic elasticae and 
discuss their properties. In particular, the representation formula 
is presented. Section 3.2 is devoted to the classification of aniso-
tropic elasticae into nine different types. Then, in Section 3.3, we 
illustrate this classification for several choices of Wulff shapes.  
We finish with some conclusions in Section 4.

2. MATERIALS AND METHODS

As mentioned earlier, Euler’s classification of isotropic elasticae 
relied heavily on the use of elliptic functions in order to represent 
his elasticae. In the anisotropic case, this tool is no longer applicable 
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however we had previously found a relevant representation for-
mula which can be applied to represent the curves. Since our clas-
sification theory is centered around a particular type of curve, the 
lemniscate, it was necessary to prove its existence. Because of the 
generality in the type of functional we consider, these curves could 
not be parameterized exactly. Instead, we rely on standard tech-
niques of mathematical analysis to prove their existence.

Constantly, while conducting this research, it was necessary to 
employ computer graphics in order to generate hypotheses about 
how the classification would proceed and to test them. Both the 
Maple and Mathematica softwares were used for this purpose in an 
essential way. This went substantially beyond there use to generate 
the graphics displayed in the article.

3. RESULTS

3.1. Anisotropic Elasticae

Let g  : S1 ® R+ denote a sufficiently smooth function satisfying 
the following convexity condition. We require that if q  denotes the 
usual polar angle in the plane, then

1 := > 0
m
g gq q +

holds. The value g  (q ) represents the unit energy per unit length of 
a piece of an infinitesimal arc having tangent vector which makes 
an angle q with the positive horizontal axis. The function m rep-
resents the curvature of the plane curve given by

c q g gq
q:= ( ) ,� - i ei

where we have identified R2 with the complex plane C. The 
(convex) curve W defined by c will be referred to as the Wulff 
shape. It was first introduced by the Ukrainian crystallographer 
Georg Wulff in order to model the equilibrium shape of a crystal 
[6]. Throughout this paper, we will say that the Wulff shape is 
symmetric if its curvature, m, verifies the following symmetric 
condition

  m p q m p q
2
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For purposes that will be clear later, we introduce the curve W^ 
which is a clockwise rotation of W through an angle p/2.

For any smooth, regular (planar) curve C: I ® R2, we denote by 
T its unit tangent and by N its unit normal with N = JT where J is 
counter-clockwise rotation by an angle p/2. We represent T by eiq 
and write g  (q  ) as g  (T) when desired. If k denotes the curvature of 
C, then the anisotropic curvature is defined by

     l k
m q

( ) := ,s s
s

( )
( ( ))

 (2)

where s represents the arc-length parameter of C.

As in [1], we define the anisotropic bending energy of C by

  ℰb [C] : = 2

C
dsò +( )l b  (3)

where b Î R. We regard b as a Lagrange multiplier which fixes the 
length of the curve.

Regardless of the boundary conditions, any equilibrium curve of ℰb 
must satisfy its associated Euler–Lagrange equation. We will refer 
to such a curve as an anisotropic elastic curve for the energy density g  . 
Critical points of ℰb , i.e. anisotropic elastic curves, are character-
ized in [1] by the conservation law
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with p Î R. If p = 0, we have that C is either a straight line or a  
rescaling of  W^.

On the other hand, if p ≠ 0, a representation formula for planar 
anisotropic elasticae was obtained in [1] [see formula (10)]
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with b  :=b1/(2p). It will be useful to define an angle w  by

  b p w=
2
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If we differentiate (5) with respect to q, we see that eiq is the unit 
tangent map of the curve into S1. Clearly, q  is restricted by

p w q q p w q
2 2

,0 0− − ≤ ≤ + −

i.e. the parameter b controls the range of the tangent map in S1.

Notice that, after rescaling if necessary, the constant of integration 
p in (4) and (5), may be assumed to be p = 1/2, as the following 
proposition shows.

Proposition 1. Let C be a critical curve of ℰb . Then, any rescaling of 

ratio r > 0, C ® �C  = rC, is a critical curve of ℰe br−2  for �p r p2 4 2= − .

Proof. Let C be a critical curve of ℰb for p ≠ 0, then the anisotropic 
curvature of C, l, verifies the conservation law (4).

Now, if we apply a rescaling of ratio r > 0 to C, say C rs rC s�( ) = ( ), 
then its curvature �k  satisfies k k( ) = ( )s r rs� , where k denotes the 
curvature of C. Moreover, by the definition of the anisotropic cur-
vature (2), we get that l l( ) = ( )s r rs� .

Thus, substituting this in (4) we obtain
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where we are denoting the derivative with respect to the arc-length 
parameter of C�  by ()¢. q.e.d.
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Moreover, if we apply a change of variable q q q� �= 0+  in the repre-
sentation formula (5), we obtain

 C C
e
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e

d
i i

= ( ) =
2 ( )

0

0
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m q q b q

q
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( ) sin
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This expression represents a quasi-rotation of an anisotropic planar 
elastica with q0 = 0. In fact, if we rotate the Wulff shape W by the 
replacement g  (q ) ® g  (q – q0), then the expression (7) above is just 
the rotation of an anisotropic planar elastic curve for the rotated 
Wulff shape. The parameter q0 induces a transformation of the elas-
ticae which is insignificant in the isotropic case.

3.2. Classification Results

In this section, we will classify planar anisotropic elasticae modulo res-
caling and quasi-rotation for symmetric Wulff shapes. Therefore, as 
mentioned above, we can assume that p = 1/2 and q0 = 0, so that the 
representation formula for anisotropic planar elasticae (5) now reads

  C e d
i

( ) :=
( )

.q
m q b q

q
q q

±
+∫ sin

 (8)

The constant b is restricted by b > −1. For these values of b, there 
may be isolated points where (see [1])

    l b q2 = = 0.+ sin  (9)

At these points, the curvature of C, k, also vanishes and, therefore, 
they represent inflection points of the curve C(s).

A particular type of lemniscate appears in Euler’s classification of 
isotropic elastic curves given in [2]. This curve is the only closed 
elastica with non-constant curvature.

We begin our classification by proving the existence of an anisotropic  
analogue for this curve in the case that the functional possesses a sym-
metric Wulff shape. These examples appear whenever the inflection 
points of C(s) happen to be double points. In the anisotropic case, 
however, this lemniscate may not be unique. An example is given 
below of a functional having three distinct anisotropic lemniscates.

We will need the following technical lemma.

Lemma 1. Let m be any positive function. Then, the function 
�y p: 0,( ) → R  defined by
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is continuous. Moreover, it has at least one zero in the interval (p /2, p).

Proof. We begin by proving that the function �y  is continuous in  
(0, p). For this purpose, we first choose an e > 0 such that w + e < p. 
Then, after decomposing the domain in three different parts, we 
have that
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Consider the limit of the third integral, I3, when e ↘ 0. Note that
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where c3 is a suitable constant. Then, since the integrand is non 
negative, we can apply the Dominated Convergence Theorem to 
obtain that I3 ® 0 as e ↘ 0.

For the second integral, I2, we make the change of variable q = p /2 + 
w + t to obtain
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where c2 is a constant. We then use the Taylor expansion of  
cos(w  + t) centered at t = e,

cos( ) cos( ) sin( )( ) ([ ] )w w e w e e e+ + + + - + -t t t= ,2
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for another constant �c2. Hence,

| | 1 = 0,2 2 2 0 2I c c
t

dt c£
-

®ò� �e

e
e

as e ↘ 0, for a suitable constant c�2.

Moreover, a similar argument works for the first integral I1 and, 
therefore,

| ( ) ( ) | | | | | | | 01 2 3� �y w e y w+ - £ + + ®I I I

as e ↘ 0. Finally, note that the case e < 0 can be treated similarly to 
the case e > 0. This proves the continuity.

Now, we just need to check that in the interval (p/2, p) there is a 
change of sign, so that there exists a zero of �y . First, we have that 
at w = p/2, the integral �y p( /2) simplifies to

y p q
m q

q
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( )0
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which is clearly positive.

Now take a d > 0, such that d < p/2, then at w = p−d we have
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which can be bounded as follows. First, notice that, after suitable 
change of variable
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Then, taking the limit as d ↘ 0, we have that the second integral 
above, J2, converges to a positive number which is independent of 
d, but the first one goes to −∞. This follows from the fact that for  
q Î (−p/2 + d , 0), sinq  is always negative and
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for q ≈ −p/2. Combining this with the fact that 0 << m << ∞, the 
result follows. q.e.d.

We deduce from this the following existence result.

Theorem 1. For any symmetric Wulff shape W, there exists a con-
stant bl Î (0,1) such that the critical curve of ℰbl

 with non-constant 
anisotropic curvature, l, is closed.

Proof. Let 0 < b < 1 and denote by C(s) any critical curve of 
ℰb with non-constant anisotropic curvature. The inflection 
points of C(s) are given by the solutions of (9). By (6), these 
points are, precisely, q = p/2 ± w  depending on the value of  
w Î(p/2, p).

As noticed above, we have that the closed critical curve appears 
whenever the inflection points are precisely the double points of 
the curve C. This means that C(p/2 + w) = C(p/2 – w).

Define the (a priori complex-valued) function

   y w p w p w( ) =
2 2
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The result follows by checking that there exists a value wl such that 
y (wl) = 0, since this wl would give rise to a value bl [see (6)] whose 
associated critical curve is closed.

Note that y  takes only real values. In fact, by using the representa-
tion formula for C (8), we have that for any w Î (p/2, p),

y w
m q b q

q q
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qp
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( ) sin
∈RR

where the second equality is obtained since cos(p/2 – t) = –cos(p/2 
+ t) and sin(p/2 – t) = sin(p/2 + t) for any value of t and applying 
the symmetric condition on the function m (1).

Then, it is clear that y w y w( ) = ( )�  and, therefore, we can apply 
Lemma 1 to get that y (w) has a zero in (p/2, p), as desired. q.e.d.

Up to quasi-rotations and rescalings there is at least one anisotropic  
elastica with non-constant anisotropic curvature associated to  
bl Î (0, 1) which we will refer to as an anisotropic elastic lemniscate 
(For some illustrations, see Figure 1).

Now, we are in conditions to prove the classification of planar 
anisotropic elasticae.

Figure 1 | Lemniscate elasticae (0 < bl = b < 1).
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Theorem 2. Let C be a planar anisotropic elastica for a symmetric 
Wulff shape W, i.e. a critical curve of ℰb . If the anisotropic curvature of 
C, l, is constant, then C is either a straight line (l = 0) or a rescaling of  
W^ (l2 = b ).

If l is non constant, we have the following families depending on the 
parameter b > –1:

 1. Orbit-like anisotropic elasticae, if b > 1. 

 2. Borderline anisotropic elasticae, if b = 1. 

 3. Wave-like anisotropic elasticae, if –1 < b < 1. In this case, we 
have the following sub-cases: 

(i) Multiloop anisotropic elasticae, if 0 < b = –sin(p/2 + w) < 1 
and y (w) < 0. 

(ii) Lemniscate anisotropic elasticae, if 0 < b = bl < 1. 

(iii) Deep waves, if 0 < b = –sin (p/2 + w) < 1 and y (w) > 0. 

(iv) Rectangular anisotropic elasticae, if b = 0. 

(v) Shallow waves, if –1 < b < 0.

Proof. Let C be a critical curve of ℰb for a fixed b. The case l 
constant has been explained before, giving rise to either straight 
lines or rescalings of W^ (see Figure 2). Thus, from now on, we 
assume that l is not constant. We recall that q  represents the 
angle that the  tangent to C makes with the horizontal axis. The 
proof is going to be divided in terms of the different possible 
values for b.

We begin by considering b > 1 (see Figure 3). In this case, (9) tells 
us that l never vanishes, i.e., there are no inflection points on the 
anisotropic elastica C and, as a consequence, q varies in the whole 
real line. Thus, we have orbit-like anisotropic elasticae.

If –1 < b ≤ 1, from (9) it is clear that at any interval of length 2p 
where q  varies there are exactly two inflection points. Therefore, 
q is only defined in an open interval of length smaller or equal 2p 
starting at one inflection point, and finishing at the other one. This 
means that if we consider our anisotropic curve C to start at one of 
those inflection points, q  varies until reaching the following inflec-
tion point, then, q  goes back again.

Take now b = 1 (see Figure 4). In this particular case, the domain 
of definition for q  can be considered to be (–p /2, 3p /2). Now, since  
limq ® –p/2l = limq ® 3p/2l = 0, we have that the curve C tends to a 
straight line at the end points. Moreover, the tangent at the end points 
tends to make an angle of –p /2 (3p /2, respectively) with the horizon-
tal axis, i.e. C tends to a vertical line. This case gives rise to a single 
loop and, hence, it corresponds with borderline anisotropic elasticae.

Assume 0 < b < 1. For a fixed b, we define the function

y q

m q b q
qp

p
�

�

� �
�( ) = .

2

2t d
t

t

-

+

ò
+

sin

( ) sin

By a similar argument as in Lemma 1, we have that above function 
is continuous for t Î (0, w). Recall that w is defined by (6) in terms 
of b, hence, it is a fixed value, w Î (p/2, p). The limit of y�( )t  when 

Figure 2 | The Wulff shapes Wn, for n = 2, 3, 4 and 6. Recall that the critical points with l2 = b  correspond to Wn
^ .

Figure  3 | Orbit-like anisotropic elasticae (b > 1).
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t ® 0 is clearly zero; while y y w�( ) ( )t ® , as t ® w. Moreover, we 
also have

d
dt

t t
t t

y
m p b

�
( ) = 2

/ 2
cos

( ) cos+ +

due to the symmetric condition (1). This means that y�  increases as 
t varies from 0 to p/2. Then, it decreases until t = w. Thus, depend-
ing on the sign of y (w), we have different sub-cases: 

•   Sub-case 0 < b < 1 and y (w) < 0 (see Figure 5). In this case, the 
function y�( )t  has exactly one change of sign which means that, 
between any two consecutive inflection points, there is a double 
point, i.e. we have multiloop anisotropic elasticae. 

•   Sub-case 0 < b < 1 and y (w) = 0 (see Figure 1). This case occurs 
when b = bl and the associated anisotropic elastica is a lemnis-
cate. The existence is  guaranteed in Theorem 1. 

•   Sub-case 0 < b < 1 and y (w) > 0 (see Figure 6). Contrary to the 
multiloop case, here, we have that y�  is always positive and, thus, 
there are no self-intersections between consecutive inflection 
points. This gives rise to deep waves. 

Now for b = 0 (see Figure 7), the domain of the tangent map on S1 is 
a semicircle, since q Î (0, p). Hence, this corresponds with the rect-
angular anisotropic elasticae. Note that in this case, the anisotropic 
elastica cuts the vertical axis orthogonally.

Finally, for the case –1 < b < 0 (see Figure 8), the arc-length of the 
domain of the tangent map is smaller than p, producing shallow 
waves. This finishes the proof. q.e.d.

For many choices of g  , the types of elasticae vary ‘monotonically’ 
as b decreases. However for others, we observed that this is not 
the case due to some oscillation in the sign of y (w). In particular, 
Figure 9 shows three distinct lemniscates which occur for the func-
tional having density g  16:= 1 + cos(16q )/(16)2. The Wulff shape 
for this functional is a smoothed 16-gon (See Section 3.3 for more 
details).

As a final remark, observe that the existence of anisotropic elastic lem-
niscate is not guaranteed if the Wulff shape does not verify the symme-
try condition (1), since, in this case, y (w) Ï R [see (10)] and therefore 
the analysis made in Lemma 1 is not applicable. Indeed, consider the 
non-symmetric Wulff shape W�  defined by the following function m

1 := 1 15
16

4 .
m

q- sin( )

Then, as suggested in Figure 10 there are no anisotropic lemnis-
cates for this Wulff shape W� . However, the other eight types of 
elasticae in the classification are present in this case.

3.3. Illustrations

In order to obtain some illustrations of above classification, we 
consider the following densities. If n is an even positive integer, we 
define

g g q q
n n

n
n

= ( ) := 1 .2+
cos( )

Figure 4 | Borderline anisotropic elasticae (b = 1).

Figure 5 | Multiloop anisotropic elasticae (0 < b < 1 and y (w) < 0).
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Figure 9 | The function y (w) for the density g  16 (Left); and the three 

distinct lemniscates (Right) Dash « »æ

è
ç w p177

256
, dot dash « »w p189

256
, 

solid « » ö

ø
÷w p397

512
.

Figure  6 | Deep waves (0 < b < 1 and y (w) > 0).

Figure 8 | Shallow waves (–1 < b < 0).

Figure 7 | Rectangular anisotropic elasticae (b = 0).
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Figure 11 | Anisotropic elasticae for the Wulff Shape, W� , as the parameter 
b decreases. The first figure represents the rotated Wulff shape, W�

^.

for real constants a, b, ma, mb, na, nb and n. This formula known as 
the superformula was introduced by Gielis to study naturally occur-
ring shapes [5,6]. In particular, for some choices of specific values 
of the constants, the corresponding curve is convex, so that it can 
be used to generate different Wulff shapes.

We are going to choose the following constants b = 1, a = ma = mb 
= na = nb = n = 4 and denote by W�  the corresponding Wulff shape. 
From Figure 11 it is clear that W�  is convex and possesses the cor-
rect symmetry. We can compute its curvature, m, using the standard  
formula

m q q q q q
q q

( ) [ ( )] ( ) ( ) ( )
([ ( )] ( ))

= 2 .
2 2

2 2 3/2

¢ + - ¢¢
¢ +

r r r r
r r

The rotated Wulff shape together with its associated anisotropic 
elasticae are shown in Figure 11. As before, these anisotropic elasti-
cae are obtained using the integral expression (8).

4. CONCLUSION

We have shown that, assuming the Wulff shape of the functional 
has the right symmetry, all types of elasticae found by Euler have 
an analogue in the anisotropic case. In addition, images of these 
curves are easily accessible via computer graphics.
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Figure 10 | Evolution of anisotropic elasticae for W�  from multiloop (Left) 
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On the other hand, if n is an odd positive integer, gn is going to be

g g q q
n n

n
n

= ( ) := 1 .2+
sin( )

In these cases,
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n
n

nsin( )

We will refer to the Wulff shape for the density gn as Wn. The dis-
tinction between the odd and even cases is done so that the func-
tion m verifies the symmetric condition (1). Several illustrations of 
these Wulff shapes and the different types of associated anisotropic  
elasticae, produced using (8) are shown in Figures 1–8.

To obtain a greater variety of Wulff shapes, we will use the follow-
ing construction. Take the polar coordinates (r, q ), where the radial 
function r = r(q ) is given by
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